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ABSTRACT. By an Alexandrov lattice we mean a $ normal lattice of subsets of an abstract set x,
such that the set of/.-regular countably additive bounded measures is sequentially closed in the set

of t-regular finitely additive bounded measures on the algebra generated by with the weak

topology.
For a pair of lattices 1 c 2 in x sufficient conditions are indicated to determine when 1

Alexandrov implies that 2 is also Alexandrov and vice versa. The extension of this situation is

given where T:XY and 1 and 2 are lattices of subsets of X and Y respectively and T is 1-2
continuous.
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1. INTRODUCTION.
We adhere for the most part to the basic terminology of A. Alexandrov [1] (see also H.

Bergstrom [6]). Let X be an abstract set, and/. a lattice of subsets of x. MR(I.,) denotes the -regular finitely additive bounded measures on 1(), the algebra generated by , and MR(a,) those

elements of MR() that are countably additive. We assume without loss of generality that all
measures are non-negative.

A fundamental theorem of A. Alexandrov states that if is, $ normal and complement
generated (i.e., completely normal), then #, MR(a,) and #,E# (i.e., converges weakly) implies
that MR(a,).

In general we will call lattices for which this is true Alexandrov lattices, and our major concern

in this paper is in determining further type lattices which are Alexandrov. In particular, we

investigate the interrelationships between a pair of lattices 1 2 in X and determine conditions

when i Alexandrov implies 2 Alexandrov and conversely, and then extend this to the situation

where T:X--,Y and 1,2 are lattices of subsets of X and Y respectively and T is /-1- continuous.

It is well known (see [5] that if # MR(t), then induces measures" and # on the associated

Wallman space IR() and also a measure #" on the space IR(a,I,) (see below for definitions), and we

investigate how weak convergence: #,# in general is reflected over to these induced measures.

This enables us to give alternative proofs of important results of Kirk and Crenshaw [8], who have

also investigated certain aspects of topological measure theory in the Alexandrov framework.
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We begin with certain notations and terminology which will be used throughout the paper, and

then set up the general Alexandrov framework of reference. The associated Wallman space is then

investigated, enabling us to readily generalize results of Varadarajan [9] and obtain in a different

manner results of Kirk and Crenshaw. Finally, in the last section we investigate Alexandrov

lattices and extend Alexandrov’s fundamental theorem.

Our notation and terminology is standard for the most part (see [1], [6], [8], [5]}, and we collect

it in the next section for the reader’s convenience.

2. TERMS AND NOTATION.
In this section we introduce some basic terms, facts, and notation of topological measure

theory used throughout this paper.

Let X be a set and be any lattice of subsets of X. We shall always assume that O, X

The following notation is used here: N for the natural numbers, R for the real numbers, z for the

general element of X, () for the smallest algebra containing , a() for the smallest a-algebra

containing . 6() is the set of all arbitrary intersections n/" with L e and r() is the set of all

arbitrary intersections A with Ao /.. /’ is complemented if A /’ implies A’/" where A’= X- A.

/" is the class of all complements of/.-sets, i.e., ’= {L’:I. e }. is complement generated if A

implies A n A"i, where A /’; s(/’) are the Souslin sets determined by .
/" is separating or T if for all x,y e X, z y implies there exists an A e such that z e A and

; ’A. /" is disjunctive if for any A /" and z A, there exists a B e/" such that e B and A c B O.
is Hausdorff or T if for all z, y e X,z # y implies there exist A, B e/" such that z e A’, u e B" and

A’f B’= O. /’ is regular if for every z X and every A /’, z A implies there exist B,C e such

that x e B’, A C C" and B" r C" O; /" is normal if for all A, B e ,A n B O implies there exist C,D

such that A C C’,B C D’, and C’nD" O; /’ is strongly normal if it is 6, normal, disjunctive and

separating. /. is compact if any family of sets in with the finite intersection property has a non-

empty intersection. Similarly, we define /’ is countably compact (c.c.). is countably

paracompact (c.p.) if A, and A, O imply there exist B, such that A, C ft, and B’, O.
A function f: X--.R U 4- oo} is t-continuous if 1"- (C) /" for every closed set C c R t/( 4- oo).

The set whose general element is a zero set of an -continuous function is denoted by (); z()

iff Z )’-(0) for some t-continuous function f. A measure p on () is a finitely additive bounded

real-valued set function. M(/’) denotes the set of all measures on (/’). A measure 1 is said to be

smooth on if A, 6/., A, O implies ;(A,)-0. A measure ; 6 M() is said to be t-regular if for

every A E (/’) and every > 0, there exists an L E/" such that/, c A and "1 p(A)- p(L) < - The set

whose general element is an /’-regular measure on () is denoted by MR(t), and the set whose

general element is an element of M(/’), which is a-smooth on , is denoted by M(a,). Moreover,
we use the notation MR(a, MR(/’)FIM(a,/’). The set of all measures 1 such that p(A)= {0,1} for

every A El(/’) and p(X)= is denoted by I(/’). The set of all {0,1}-valued -regular measures is

denoted by IR(/’), i.e., IR()= I()IMR(). The Dirac measure (concentrated) at z is denoted by

1. For 1 M() the support of 1 is defined and denoted by S(p) c (L : ;I(L)
where I/1 denoted the variation of measure 1. is said to be replete if for every 1 IR(a,) we

have $(p)#O, where IR(a,)= IR()nI(,/’). A measure 1 MR() is -smooth if Lo O implies

;(Lo)-.0 for any net (Lo} in . The set of r-smooth regular measures is denoted by MR(z,/’).
Since any measure pc M(/’) splits into its non-negative and non-positive parts 1+ and

respectively, w.l.o.g, we shall work with non-negative measures.



ALEXANDROV LATTICES 51

Let and /’2 be two lattices of subsets of X. Throughout this paper we shall assume that
c 2. The following describe relationships between/’I and .

semiseparates (s.s) 2 if for every A and B 2, A f B O implies there exists a C

such that B C C and A fC O; separates 2 if for all A, B e , A f B O implies there exist

C, D such that A C C, B C D and C f D O. coseparates 2 if for all A, B 2, A

implies there exist C, D such that A C C’, B C D" and C’n D" . Clearly, coseparates
implies separates 2, and separates implies 1 semiseparates 2- 2 is countably
paracompact (c.p.) if for every A 2, An imply there exist B such that A C B’, and

B’nlO. 2 is countably bounded (c.b.) if for all A 2, An imply there exist B such
that A B and B .

For the restriction of u MR(2) to I1(1) we adopt the notation u l or, simply, u Note that
if MR(t2) and if 1 s.s. 2, then u MR().

We conclude this section with the following general extension theorem.
THEOREM 2.1 [4]. Let c be two lattices of subsets of X. Then any measure #

can be extended to a v, v MR(), and if 1 separates 2 then v is unique. If # MR(a,1) and
is 1 countably paracompact or countably bounded, then v MR(a,2).
3. WALLMAN SPACES.

Let X be an abstract set and be a lattice of subsets of X with O, X . In this section we

eview some facts pertaining to the Wallman spaces IR() and IR(a,), and we introduce measures

induced by M() on various algebras generated by lattices in these spaces.
We assume for convenience throughout that is a disjunctive lattice, although this is not

necessary in all statements that follow.

Define W(A)= {# IR():#(A)= 1}, for A

PROPOSITION 3.1. If is a disjunctive lattice, then YA, B t(/.) we have

i) WfAf) W(A)W()

ii) W(A O B) W(A)OW(B)

iii) A C BcW(A) C W(B)

iv) W(A)’= W(A’)
v) w((z)) (w(z))
Consequently,

w() {W(A):A } is a disjunctive lattice.

Note that if is separating and disjunctive, then the closure in.IR() of L is given by
Z {W(A):Lc W(A),A Z} W(L).

PROPOSITION 3.2. To each M(), there corresponds a B eM{W{)) defined by
(W(A)) (A), A It(Z) such that

a) is well-defined.

b) M(W()),

c) if u M(W()), then u , for some # M(),

d) # MR(/.) if and only if MR(W(I.)).
PROOF.

a) Since is disjunctive, we have W(A)= W(B)A B=#(A)= #(B)=’(W(A))= (W(B))
b) If W(A)f W(B)= W(AfB)= , then A GB ( (because is disjunctive) and ()= #(0)= O.

"fi(W(A))t.J W(B))= #(A B)= #(A) + #(B)= "fi(W(A)) + (W(B)), M(W())
c) We have & #2=,&(A) # #2(A) for some A . Therefore, I(W(A)) B(W(A)); hence,
Suppose , M(W(I.)). Define # on lift) by #(A)= u(W(A)) for all A It(Z). Then, # is well-defined
and =.
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d) It suffices to show that MR(W(L)) implies V MR(L). Since t is/.-regular, (A)~ #(L) and

A (L),A D L. However, #(L) (W(L)). Therefore, W(L) C W(A). Hence, # MR(L).

We can define a closed set topology on IR(L) by ting the closed sets rW(L). This

generates the Wallman topolo (W-top.). The topologicM space {IR(L),W} is compact d TI. It
is T2 if d only if L is normM.

Since W(L) d rW(L) e compact lattices, W(L) sepates rW(L). Therefore, if # MR(L),

then MR(W(L)) d by Threm 2.1 h a unique extension to MR(rW(L)). We note that

since W(t) and rW(L) e compact lattices, d e not only a-smith on their resctive
lattices, but also r-smith. Since both B and e countably additive, we c extend them

uniquely to a(W(L)) d o(rW(L)) respectively d continue to denote the extensions by d .
Note that is 5W(L) regular on ,(W(L)) while is still rW(L) regul on (rW(L)).

We now summarize some smthness properties of in terms of d (further detMls c

found in [5]).
PROPOSITION 3.3. Let X be a set d let L sepnting d disjunctive. If MR(L),

then the following statements e equivMent:

1) MR(,Z)

2) (W(L.)) O, OW(L.) C IR(Z)-X, L l, L, e
3) ( W(Li)) O, W{L,) C IRL)- IR(a,L), L, 1, Lie L
4) *(X)= (IR(L)), where " is the induced "outer" meure.

PROPOSITION 3.4. Let L be a separating d disjunctive lattice of subsets of X d let

MR(L). The following statements e equivMent:

1) e M(.,t)
2) vanishes on every W-closed set of IR()- X

3) ’(x)= (m())
Under the same conditions on , when v e MR(L), we also have

PROPOSITION 3.5. The following statements e true:

1) on O (rW(L))" is W(L)-regular

2) " on w()

PROOF. Define B(W(L)) p(L), L e (L); is extended to (W(L)). Let O e (rW(t))’, i.e., O

is W on. Since MR(rW(L)), there exists F e, F C O such that u(O-F)< e. Assume that

F= W(L=). Then, FO’=O. Thus, W(La)O’=O. Hence, W(L)=W(oL=)cO, LL. Since

F W(La), then F C W(L) which implies that (O-W(L)) (O-F)< e, i.e., is W(L)-regul on

We now show that (F)=B*(F). Clely, rW(L) is a 8 lattice. Also, MF)= (OW(L=))
infB(W(L=)) inf(W(L)) p*(F). Therefore, * on rW(L). On the other hd, a(W(L))

C a(rW()) d * * everywhere. For F rW(L),(F) *(F) *(F). Hence, * on rW(L).
Finally, * on rW(L) i.e., . on (W(L))’.

It is imrtant to note that is defined on zero sets of the w-topolo. Nely, we have

PROPOSITION 3.6. Every zero set Z of a continuous function on IR(L) is element of

.(w(z)).
PROOF. Z is compact, d Mso a G, set; thus Z= O O,e(rW())’. Hence

N
0= W(L,=)’,L,oe . Thus Z

aUW(L,=). Z h a finite cover W(L%,)’= W(L). Hence,

Z c W(L)’C O for M1 n d consequently, Z c W(L,)’C O= Z. Thus Z W(L)’, i.e. Z is a

untable intersection of W(L)’L L, or Z a(W(L)).
Now, let us modify lightly the w mapping d consider W(a,A)= {IR(a,L);p(A)=I}

W(A)IR(a,L). For p e MR(L) define " on (W(a,L)) W(a,(L)) by p’(W(a,B)) p(B),B e (L).
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PROPOSITION 3.7. Let be a separating and disjunctive lattice. Then the following

statements are equivalent"

1) #’. MR(W(o,L)) for all MR(L)

2) If # MR(W(a,L)) then p ’, where # MR(L)

3) , MR(o,L) if and only if/,’ MR(o, W(o,L))

4) If MR(o,/.), then v" is the projection of on IR(a,L) (since *(IR(a,))= "(IR()) in this

(;&.Be).
The proof of the equivalence is not difficult (see [5]).
4. ALEXANDROV’S REPRESENTATION THEOREM AND WEAK CONVERGENCE.

In this section we summarize some of the properties of weak convergence of measures due to

Alexandrov and investigate the relationship of these properties to the induced measures on IR(L)

and IR(o,L) considered in the previous section, i.e., , , and v" respectively.

Let X be an abstract set and let L be a normal lattice. The algebra of all L-continuous

functions is denoted by C(L); the algebra of bounded L-continuous functions is denoted by C,(L).
We state for reference Alexandrov’s Representation Theorem (A.R.T.).
THEOREM (Alexandrov) [lb]. Let t. be a normal lattice. Then, the conjugate space Cb(L)"

of Cb(L is MR(L). In more details: To every bounded linear functional there corresponds a

unique # MR(L) such that O(?)= fide, with IIOII vl. The positive and negative parts of

correspond to those of #. Furthermore, if is non-negative, then YA e L, v(A) inlO(?) where in? is

taken over all ? in Cb(L) such that xa < ? -< 1, where xA is the characteristic function of A.

The spaces C(L) and C(L) are vector spaces. In particular, C,(L) is a Banach space with sup

norm. We can topologize MR(L) with the (weak ") topology as follows: If p E MR(), then

va MR(L) converges to V in the weak topology if and only if f?d#,, converges to f?dv for all

? Cb(L). In other words, we write ,,, MR(L) and w
/,-: iff f J’d,-, f ?d/, for all ? Cb(L).

PROPOSITION 4.1 (Portmanteau) [lc]. Let {g,,} be a net in MR + () the set of all non-

negative measures of MR(I.). The following statements axe equivalent:

1)
2) t,,,(x)uo(X) and tt,,(L) <_ t,o(L) for all L /.

3) u,(X)--,o(X) and lira u,(L’) > Uo(L’) for all L

In what follows we assume that L is $ normal and disjunctive. Note the following facts:

1) IR(L) is closed in M_+(L)
2) If L is separating, then IX] MR(L), where IX] is the linear spac spanned by all u in MR(/.)

and the closure is taken with respect to the weak topology.
These statements are not difficult to prove. In fact, with regards to 1), we have to use the W-

compactness of IR(L) and the following

PROPOSITION 4.2. Let #,# 61R(L). Then,

W to
#=--*u if and only if

WPROOF. Let #,,--’t* and let L 6 L be such that U(L’)= 1. Then, # 6 W(L)’. Since W(L)" is W-

open, hence ua W(L)" for all a, a > ao, i.e., tim #a(L’) > #(L’) 1. Hence tim #a(L’) >_ p(L’),VL L.

Obviously, lira #o(X) #(X). By Proposition 4.t, we have to

Conversely, suppose wv,,-u and let v EW(L)’. Then, u(L’)= and by Proposition 4.1, lira

U(L’) 1. Thus, lira #o,(L’) and U, W(L)" for all ,a > %. Hence w
#,,, because the open sets are

generated by W(L’).
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COROLLARY 4.1. Proposition 4.2 holds if the topological space {IR(/,),W} is replaced by its

subspace IR(a,/, ), W}.

Next, we consider the situation with two normal lattices/,,,/-2, and/,, c/-2.
Set ’(E) inl{l(L’):E C L’,L E/,}. Similarly, define p.(E) sup{l(L):L C E,L E/,1} for E C X.

PROPOSITION 4.3. Let /, semiseparate /’2" If BE/,2, /, /E MR+(/,1) and p,,-.wt, then

t’(B) > li- t’(B) and t.(B’) < iim(t,,)..
PROOF. Since/, semiseparates 2, then for every B E/’2 and L E , B C L C L’, L E/,. Hence

Similarly, we get

i’(B) inf {/(L): B C L, L E 11"

p.(B) sup {p(A’): A’C B, A E }.

Now, the conclusion of the proposition follows from the Portmanteau theorem.

PROPOSITION 4.4. Let/, separate/’2, and for t, t 6 MR + (/,) let u, u 6 MR(Z2) denote the

extensions of , to (). Then

w w

PROOF. By Theorem 2.1

seisepaes , we have

However, v=u" on L, d v=u. on . By Proposition 4.3 we have O’(B)o(B) or

v(B) libya(B) for B

On the other hd, u(X)u(x), u(x) v(X), u(X) v(X). By the Portmteau threm we have

w
VV

function on C(), d even a positive linear functionf 0. By A.R.T. (f)= ffdv, where
x

v fi MR(Z), d it is not difficult to s that 5 v on d u(X) v(X).
PROPOSITION 4.5. If is a strongly normM lattice of subsets of x d MR(Z), then

W

PROOF. Let
x

extends . Also, 7 is continuous with respect to the weak topology, i.e., (be definition)

W ) lau la ().

Without loss of generity we can sume

6 C(). Note that the set {: 6 Ca(g)} with the sup norm is a subMgebra of the Bach Mgebra
C(rW(g)) d is isometricMly isomorphic to the Bach Mgebra C(). Morver, by the Stone-
Weierstrs threm {]:lCa()} is a dense subset of C(rW()). Thus, we have

C(W(Z)) {: C(Z)}.

Let be a bounded linear functional on Ca(/.).

MR(/.). Define $ on C(rW(/.)) by
Thus, by A.R.T., ,I,(/)= f fdl, where

)() (f) for f
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Clearly, is a bounded linear functional. Again, by A.R.T.

) $d

where MR(rW(/,)) and (W(L)) inf{(f):XW(L < f < 1}

inf{,(f): XL < f < 1} t(L) h(W(L)).

Hence, h and () (f) $ 7dh $ fdit.
Thus w w.

Ita--,pC:pa--*it.

Proposition 4.4 and Proposition 4.5 together give an alternative proof of a theorem of Kirk and
Crenshaw in the following formulation.

COROLLARY 4.5.1. Let /, be a strongly normal lattice of subsets of x and rW(} be the

Wallman topology on IR(). Let {its} be a net in MR+(/.) and It MR + (/.). The following are

equivalent:

) ^^Pa--’P

2) pa(X)-.p(X) and lira pa(L) <_ p(L) for all L

3) pa(X)--,p(X) and lira pa(L’) >_ p(L’) for all L Z

PROOF. Let It,,, It MR(/,) and suppose that It,,--it where we are, of course, referring here to

the lattice w(/,) and the space Cb(W(/,)). Then, since W() separates rW(), Proposition 4.4 gives

z,,-.it which is equivalent to g,,t’ (by Proposition 4.5). This in conjunction with the Portmanteau
theorem completes the proof.

We introduce a set of measures M () as follows:

M (/,) {p MR(/,) and for any p IR()- IR(a,), there exists a G (rW())" such that p G and

II(G) =0}.
Note that the measures of M (Z) integrate all f C().
Let Ito M. (/,), and let O: {Y(ito, fl, f2 f,, ) It MR(/,): f.fidft- f :fidito < , where

f, C(/.),(1 _<i_< n)} be a neighborhood system at point Ito- O is a baseXfor topoXiogy on M. ().

Clearly, and (rW(a,/.))" coincide on IR(tr,/.).
PROPOSITION 4.6. Let t,,,ito M (/.). Then,

O w

PROOF. By definition, a net {/) on M (/.) converges to/ M () with respect to O if and

only if f fdit- f fd/ for all f C(). Therefore, if//% then clearly
x x

Conversely, let It--’ito. We have to prove that pIto or, equivalently, that the functional

() fyd,x
is continuous with respect to rW(,/,), for all f C().

First we show that ]:IR(,/,)-.R.
Let F z X: f(=)l < n) /.. Since ! C(/.), then F X and consequently, p(F) 1, i.e., there
exists N such that It(F)= for n >_ N. Thus,

If(it)l f fd,l f fditl <_ f Ifld,<_N.
X F F
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Next, we show that ] is continuous. Assume w.l.o.g, f _> O. Let Ln= {z:/(z)> n} where L, and

L. O. Then, po(L.) 0 for some N. Clearly, (L,) 0 for M1 a > a. and

i()- i(o) IId- IIdo fINd IINdo
X X X X

for MI a > a., where IN I N Cb(t). Since w 0
Vat,o, we have f(o)- f(o) 0. Thus Vo

X d Y opologic spaces d Lt d L2 lagices of closed subsegs of X d

rescfively. Suppose T is line mapping of M(L) onto M(L2) d 1:1 such

I[T[I 1 d T is continuous h ways in the rescfive opoloes, i.e,. T is t-a
hommohic. is a neighborh system poing ,i 1, which forms bis for ghe o1o
of M (L). By Prosifion 4. , gology restricted o IR(,L) yields he se closed sets

rW(,L,). If L d 2 e sepfing, disjunctive d replete, ghen we c identify IR(,L) X

PROPOSITION 4.7. Le L d L2 be separating, disjunctive d replege. If M(L) d
M(2) e isomorphic, ghen x d Y e hommorphic wigh respec o he rLt d rL2 opologies
of closed ses.

The prf follows immediately from Proposition 4. d he definitions of ghe relevt

gopologies.

This isomorphism proposition gives ghe following resulgs:

1) If X is Ts2 (a Tychonov spce) d Lx d if Y is Ts d L2 :2 where L d L2 e
replete, i.e., x d Y e re-compc, hen M() dM(2) isomorphic implies h X d

e hommorphic [9].
2) If X, L( ) and Y, L2( 2) e T spces d ech L is replete, hen M() d M
isomorphic implies hs X d Y e hommorphic.

We now urn enion o C(L); unlike he situation wih C6(L) we hve

c(z,) c(w(,,,,))

where "]()= .[.fd, IR(a,Z), i.e., C() is algebraically isomorphic to C(W(a,)). Details can be
x

found in [3].
PROPOSITION 4.8. ’, " where ’,, MR(a,Z) for all > 0.

PROOF. We have

1//o ffd, f fdu, for all f Cb(/.).
X X

On the other hd,

IR (a,) IR (a,t)

since eb( d Cb(W(a, e isomohic (I ]). Let O(f)= ffdp,O. By A.R.T. define

(])= (f) on w(a,). Clely, is a unded line functionM. AgMn, by A.R.T. (])= f
R(,)

where p MR(W(,Z)) d p(W(L)) inf () inf@(f) (L) U’(W(, L)) X(,Z) 1, XL f I.

Thus () (f) fdp’= f fdp. Hence,

REMARK. If hC(rW(a,)), then I=hlxC(r), and if !C() then h=] and

h C(W(a,)). This situation arises, for example, if X is T3 space and % (the lattice of zero sets

of x).
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5. ALEXANDROV LATTICES.
Consider X, where is 6 normal and complement generated (completely normal). Then

Alexandrov’s Fundamental Theorem [lb], states that MR(a, is weakly sequentially closed in

MR(/.), i.e., if g. e MR(a, and , ,, then , MR(a, We will call lattices for which this is

true, Alexandrov lattices and will initiate a consideration of such lattices in this section. Formally,

then we have

DEFINITION. A 6 normal lattice of subsets of X is said to be an Alexandrov lattice if

#n MR(a, and #, E #, where # MR(/.), imply # MR(a,
PROPOSITION 5.1. Let/.t and/.v c t, be normal lattices. If/. is/. c.p. or c.b. and

s.s./.v then if/. is an Alexandrov lattice,/. is also an Alexandrov lattice.

PROOF. Suppose v MR(a,) and v. u, u MR(). Since/. s.s. and Cb(/.) C(/.),
then we have

v, p, #n vn MR(a, L1),

Since /.1 is Alexandrov, MR(a, L1) and consequently, v MR(a, L2) (since L is /.1 c.p. or c.b.).
Thus/.2 is also an Alexandrov lattice.

REMARK. If instead of/.1 s.s. /’2 we assume that L is $ and r(Ll)C s(1) then in this case

,#.=v,I M(a,1) and therefore, by Choquet’s capacity theorem [7] #nMR(a, LI). Also,

vn# v M(L1), but < p on L1, where p MR(L1) and #(X)= ,(X), and since f1.dv f1.d, for

all I" Cb(L1) , w_, . Hence , MR(or, L1) since 1 is Alexandrov and consequently # M(a, Ll).
Note that if L and L are normal and C(/.1)= C(L2), which implies that/.1 separates/.2, and

if L is c.p., then /.2 is 1 c.p. and MR(a,/.1). Then by Theorem 2.1 # extends uniquely to

v MR(a, L2). In other words, we have

COROLLARY 5.1. Let 1 and 2 be normal, C(2)= C(/.l) and/.2 be c.p.. Then,

L Alezandrov = /.2 Aiezandrov.

By Proposition 5.1 we also have the following
COROLLARY 5.2. If is 6 normal and c.p. then/, is ;(/.) c.p. and is also Alexandrov since

(/.) is Alexandrov.

Suppose /.1 and /.2 are 6 normal lattices, /.1 c/.2 and C(/.1)= C(L2). Let #, w_. where

#n MR(a,/.I) and , MR(/.1). Then, if v, MR(a, is the unique extension of ., and

we have v, v and v MR(a, L2) assuming /.2 is Alexandrov. Therefore, v MR(a,1) and 1 is

Alexandrov. This fact together with Corollary 5.1 gives
COROLLARY 5.3. If/.1 and/.2 are $ normal lattices,/.2 is c.p. and C(2)= C(/.1), then 1 is

Alexandrov if and only if/-2 is Alexandrov.

PROPOSITION 5.2. If L is a $ normal and c.p. lattice of subsets of X and v. E v where

#,, M(,r,/.),# M(L), then # M(a,L).
PROOF. Let #n M(a,) and v. w_, #- The functional .(y)= .1.dv. is a bounded linear

functional of ! Cb(), and by A.R.T., we have 0,(1.)= J" yd#. j" 1’dv., v. MR(/.), v.(X)= v.(X)
and #, < v. on L. Since/. is c.p., we also have v. MR(a,). Thus f 1"dr, f Idv,---, f 1.d#. Also,
by A.R.T., o(f) f fd# f fdv, u MR( and v(X) v(X) on/.. Therefore, f fdvn--* f fdv or

Since L is 6 normal and c.p., by Alexandrov’s theorem v MR(a,L). On the other hand, we have

# < v on L. Therefore, v m(a, L).
PROPOSITION 5.3. Let L and L be lattices of subsets of X. Suppose

is an Alexandrov lattice. If M(a,L’2)MR(L2)C M(a, L2), then/.2 is also an Alexandrov lattice.
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wPROOF. Let v, v where v, 6- MR(a,2) and v 6- MR(). Since is an Alexandrov lattice
wand v, I,, 6- MR(a, 111 )’ we have v, , v 6- MR(a, L1). L1 actually cosepaxates L since L

separates 2 and L is normal. It is not difficult to see that 6- M(tr, 11"2) since must be 1-regular
on L"2. Now, since v6-MR(L2) and v6-M(a,L’2), we have v6-M(a,L’2)nMR(L2). Clearly, if

M(a,L’2)N MR(L2) C M(o’,L2), then v 6- MR(a, L2). Therefore, L is an Alexandrov lattice.

Let L be a lattice of subsets of X and 11 be a lattice of subsets of Y. Again, we assume that

111 and L are normal.

Let T:X--Y be L- continuous. Consider a mapping A:Cb(L2)Cb(L), such that A is linear

and bounded.

If the mapping A is defined by Ag gT where g 6- Cb(112) then define the adjoint map by

A’:Cb(11)’Cb(112)" where Cb(11,)" is congruent to MR(Z,) (i 1,2) and (A’O)(g)= (Ag). By A.R.T., we

have

, 6_ MR(L1) and A’ v,v 6- MR(L2). Then,

O(AG) f Agdl and (A’)(g) f gdv, for all g 6-

and consequently A’:MR(Li)--,MR(2) where A’g v and

f gdv (A’41,)(g) e(Ag) f Agdlz f gTdlz f gdlzT l, g 6- Cb(2)"
Y X X Y

Note that A is a linear mapping and that Aglg glTg2T AglAg2. Therefore, A is an algebra
homeomorphism. Also, we have Ag gT <- 9 [[. Indeed, A is bounded. If T s surjective,

then Ag g II, i.e., A is an isometry, and consequently A is invertible.

Some basic properties of A" are collected in the following
PROPOSITION 5.4. a) If > 0, then v A’p > 0

b) A’# v > pT- on L and v(Y) #T-

c) A’(IR(L)) C IR(2)
d) A’IIR(1 is Wallman continuous.

PROOF. We show only b). Further details can be found in [2]. We have

IT- I(L) f dl,T- f XLdlzT <_ f gdlT- f gdv where g 6- Cb(L2) and XL _< g -< 1. Therefore,
L r

obtain
v
f dv f dpT- Hence v(Y) gT-I,T-I(L) < v(L) for all 6-/-2. If g 1, we
Y Y

PROPOSITION 5.5. a) If 112 is c.p., then A’(MR(a, L1) C MR(a, L2)
b) If T is surjective and 2 is T-1(L2) c.b., then MR(a, L2)C A’(MR(a, L1))"
c) If a) and b) hold, then A’(MR(a,L))= MR(a, L2)

PROOF. Here we show only a). Suppose 112 is c.p.. Let /6- MR(a,L) and consider any

element of A’(MR(a,111)), A’I. We must show that A’I v 6- MR(a,112). By A.R.T., we have

and is a-smooth. In fact, consider {g,}, g, 6-C,(11), ,, 0. Then, e,T 0 and, therefore,
lira f g,Tdlz 0. However, tim f g,Tdlz lira f g,dv 0 which means v where O() f gdv, for all

g 6- C,(L2). Since is a-smooth and L is c.p., we have A’ v 6- MR(a, L2). Hence

A’(MR(a,111)) C MR(a,11:).

PROPOSITION 5.6. 1) Under the assumption a) of Proposition 5.5, if 111 is an Alexandrov
lattice and

#n #, . 6- MR(’,L1),

then A’#n w_, A’# and A’lzn, A’I 6- MR(a,2);
2) Under the assumptions a) and b) of Proposition 5.5 and if A is surjective, then 1 Alexandrov

implies that 112 is Alexandrov.
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PROOF. 1) Since 1 is Alexandrov, we have

#. #, # E MR(,).

Then by Proposition 5,4 d) A’#.--A’#. By Proposition 5.5 a)

A’pn MR(,2) and A’# A’(MR(a,1)) C MR(a,a).

2) Let u MR(,2). Then to,n, MR(2).
By Proposition 5.5 b) we have

v. A’#., #, . MR(a,); v A’#, . MR().
Since A is surjective, we have

Hence

f Agdpn f gdr’n- f gdu f Agd#.

to

Since 1 is Alexandrov, # MR(a,1). Therefore, by Proposition 5.5 a) A’# u

_
MR(a,I..2). Hence

2 is Alexandrov.

Thus, under the above assumptions the measure defined on Alexandrov lattices is invariant

under adjoint mappings.
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