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Abstract

Sufficient conditions are obtained for the global asymptotic stability of the

positive equilibrium of a regulated logistic growth with a delay in the state

feedback of the control modelled by

dn(t) [1- (aln(t) + a2n(t- r))
(t) -u(t) + (t )dt

where u denotes an indirect control variable, r, a2, r,a, b, c E (0, oo) and

[0,

177
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1. Introduction

The autonomous ordinary differential equation

rN(t)[1 N(t)
r, K E (O, oo) 1.1

dt K]

has been a basis for the development of several models of dynamics of populations in mathe-

matical ecology. It is an elementary fact that if N(0) > 0 then the corresponding solution of

(1.1) satisfies

lim N(t)= K 1.2

and the convergence in (1.2) is monotonic. It has been found that such a monotonic con-

vergence to the equilibrium is not realistic in certain laboratory populations in temporally

uniform environments (Hutchinson [9]); also some of the negative feedback effects (such as

the accumulation of toxic residuals etc.) act with some time delay (Volterra [13]). One of

the possible ways of modifying (1.1) so as to model these additional features is to consider a

time lagged equation of the form

dN(t)dt rN(t)[1- (aIN(t) +a2N(t- 1.3
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where a, a2, K, r (0, oo). Equations of the form (1.3) have been discussed by several authors

in the literature on population dynamics.

Along with (1.3) one considers an initial condition of the form

N() () > 0; (0) > 0; e C([-,0I, m+). 1.4

Solutions of (1.3) and (1.4) satisfy

[f0’{ (N() + N(,- ))}] t>0N(t) N(0)exp r 1-
K

from which one can see that solutions of (1.3) and (1.4) are defined for all > 0 and also

satisfy g(t) > 0 for all > 0. It is known that if al > a2 then all solutions of (1.3)-(1.4)
satisfy

K
lim N(t) N* 1.5
t--,oo al + {12

and the convergence in (1.5) is unconditional on the size of delay for details see Lenhart and

Travis [12] or Gopalsamy [4]). We shall suppose that we have a situation where the equilibrium

N* of (1.5) is not the desirable one (or affordable) and a smaller value of N* is required; thus

we are required to alter the system (1.3) structurally so as to make the population stabilise

at value lower than that in (1.5). One of the methods of accomplishing this is to introduce

a "feedback" control variable and this can be implemented by means a biological control

or some harvesting procedure. We formulate one such model below. Stability of feedback

control systems has been discussed in the books by LaSalle and Lefschetz [10], Lefschetz [11]
and Aizerman and Gantmacher [1].

2. Feedback regulation

We consider now the initial value problem

dn(t)dt rn(t) [1- ( ain(t) + an(tK r)/ cu(t)]
du(t..) -au(t) + bn(t); a b, c (0, oo)dt
.() () > 0; (0) > 0; + c([-, 0], n+)

u(O) u > 0

where u denotes an "indirect control" variable (Aizerman and Gantmacher [1] or Lefschetz

[11]). It is not difficult to see that solutions of (2.1) are defined for all > 0 and also satisfy

2.1

n(t) > O, u(t) > 0 for > 0.

The controlled system (2.1) has a positive equilibrium (n*, u*) defined by

(al+a2 -)n* bn*
K + =1; u =-a
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The following preparation will be useful in the proof of our result on the global attractivity

of (’, =*).

First we verify that all solutions of (2.1) remain bounded for all _> 0. Suppose for

instance that

limsupn(t) cx;

let {t, be a sequence such that

tm oo, n( t,,, ---} oo as m oo and .dn( >0; 99..._
dt

it will follow from the first of (2.1) that

dn atn(t< rn(tm) 1- < 0 2.3
dt t., K

if m is large enough and so (2.3) will contradict (2.2). Thus we conclude

limsupn(t) < oo.

One can in fact obtain explicit bounds for n and we do not need these for our work below.

he second of (2.1) can be written as

-u [(t)"’] (t)"’
dt

leading to

and hence

u(t)eat u(0) + b n(s)ea’ds

_<u(O) 4-fi(e --1); fi sup n(t)
2.4

u(t) <_ u(O)e -at 4- -bfi(1 -e-at); > 0 2.5
a

from which the uniform boundedness of u follows. For convenience in the following we define

new variables x, y, a as follows:

2.6

(t)=u(t)-u"

Zn

(t) -x(t)- u(t).
One can verify by direct calculation that

where

dt

d()
dt

dz(t) -ax(t) + b(a(t))dt

-crz(t)- ar--(,,(tl)- -K-((t- ,-11- + n’(a(t)) + -n rk(a(t- r))

((t)) " [(’)- 1].

2.7

2.8

2.9

2.10
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Theorem 2.1. Suppose r, K, al, a2, b, c are positive numbers such that al > a2 >_ 0 and

" >_ O. Then all positive solutions of (2.1) satisfy

lira n(t) n*; lim u(t) u’. 9..11

Proof. It is sufficient to show that

lira z(t) 0 and lim y(t) 0 2.12

due to our definition in (2.6). We shall prove (2.12). We consider a Lyapunov functional

V V(x(-),a(-)) defined by

V(x,o)(.) Bx2(t) + 13 (s)d. + 2(a(s))ds 2.13

where B, fl d e positive nbers to be lected below suitably. Note that by the

deflation ff in (2.10), V is nonnegative. CMculating the rate of ge of V Mong the

solutions of (2.7)-(2.10),

dV
d -2Baz(t) + z(t)(a(t))[2Bb-]

+ ((t ))[-1

-2Baz(t) + z(t)(.(t))[2Bb-

flair 1 #ar 1 2(o(t_ r)). 2.14+ ((t))+
Let us now choose 8 such that

and define r as follows:

1 latr
2.15

2 K

/2 -(a, a); 2.16

note that this definition of r is possible since by assumption a > a2. One can now simplify

(2.14) to the form

’-- < Bax2(t)+Bax2(t)-,(t)(,(t))(Bb-) ’((t))] 2.17

We now se B such that

Bb fl 0 2.18
2

where fl is y positive number; we obrve that it is sufficient to ch B to be the positive

rt of the quadratic equation



FEEDBACK REGULATION OF LOGISTIC GROWTH 181

B2b2 B[arl 4- blcr] +
]2c2r2

4
=0. 2.19

For this choice of B, we have from (2.17),

dV
2.20

leading to

V(x,a)(t) + oo [Bax2(s) + {-ax(s)-rl(a(s))12]ds < V(x,a)(O). 2.21

It follows from (2.21) that x E Ll(0, oo). We want to verify that x is uniformly continuous

on (0, oo) and for this it is sufficient that k is uniformly bounded on (0, oo). From (2.7) we

can see that k will be uniformly bounded if both x is uniformly bounded and a is uniformly

bounded above. The uniform boundedness of x is immediate from (2.21) since (2.21) implies

Bx2(t) <_ V(x,a)(t) <_ V(x,a)(O).

Suppose

lim sup a(

then there exists a sequence {tin } OO as m - oo such that

do"
>_ 0; a(t,, r) _< a(t,,), a(t,,,) oo as m oo. 2.22

tm

We derive from (2.8) and (2.22) that

do" <_ -crx(tm) -(al a2)(a(tm)) 2.23

and (2.23) contradicts (2.22) for large enough m. Thus we conclude that

limsupa(t) < oo. 2.24

From (2.24) and the uniform boundedness of x we can conclude that is uniformly bounded

with the implication that x is uniformly continuous on (0, oo). It is easy to infer from (2.21)
that x2 E LI(0, oo); by Barbalat’s lemma (see Corduneanu [3]) we conclude that

lim x(t) 0. 2.25

The uniform continuity of yr-’x(t)- r/(a(t)) can be verified from the above analysis of x

and a. Again from (2.21) we have

[x(t)- r/(o-(t))] ELI(O, o)

and threrfore by Barbalat’s lemma (Corduneanu [3]) we can conclude



182 K. GOPALSAHY AND P. ENG

lim v/h"L:(t)- ,(,,(t))] o.

Since x(t) 0 as oo, it will then follow from (2.26) that

2.26

lim a(t) 0 and lim y(t) 0. 2.28

This completes the proof.

3. Stabilisation and bifurcation control

It is known that the positive equilibrium of the delay logistic equation

dN(t)= rN(t) [1 N(t ’)1dt K
3.1

becomes linearly unstable when rr > and for small positive (rr- ) there exists a periodic

solution solution of (3.1) bifurcating from the positive equilibrium (Hassard et al. [8]). We

suppose that it is required to stabilise the system (3.1) possibly at a different equilibrium and

thereby avoid the bifurcation to periodicity. Accordingly we consider the feedback control

system

dt K 3.2
d(t) (t) + b.()dt

where r,K,c,a, b E (0, x), r [0, x) and (3.2) is supplemented with initial conditions of the

type (2.1). The system (3.2) has a positive equilibrium (n*, u*) where

u*=- +-- 1 3.3
a a

In terms of the variables x, y, a defined in (2.6) we rewrite the system (3.2) as follows:

dz(t-----2) -az(t) + b(a(t)); (a(t)) = n’[e"(’) 11 ]dt
dtr(t) -crz(t)

r

dt -ff(( ).
3.4

Theorem 3.1. Assume that the patmaneters of the system (3.2) satisfy

bc 1
> and a > (1 + vf)r. 3.5

Then the positive equilibrium (n*, u*) of (3.2) is linearly asymptotically stable irrespective

of the size of the delay r.

Proof, The equilibrium (n*, u*) of (3.2) is linearly asymptotically stable if the trivial solution

of the system (3.4) is linearly asymptotically stable. Such a linear system is

d(t) -(t) + b’S(t)dt

i 3.6
dS(t) rn*
dt -(t)- --ff-s(t- ,)

whose characteristic equation is
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or equivalently

A + a -bn*

cr A+ T e
, =0

r ) arl*
A2+A a+-n e x +e +rn’=O. 3.7

If r 0, (3.7) becomes

A+A a+n + + =0

who roots have negative re pts. Thus the tfivi lution of the line system (3.6) is

ymptoticMly stable when r 0. By the continuity of the roots of (3.7) on the parameters

(for details see Cooke d Grossm [2]), it will follow that M1 the roots of (3.7) will have

negative re pts for sml positive ues of r. We wt to find scient conditions so

that the reM parts of the roots of (3.7) will have negative re pts whatever the size of the

delay r.

We note first A 0 is not a root of (3.7). If the root of (3.7) have zero or positive

ral parts, then for some positive r, A +iw, w > 0 are roots of (3.7). If we can show that, +iw cannot be roots of (3.7), then it will follow that all roots of (3.7) lie on the left half

of the complex plane for all r > O. For instance if A +iw is a root of (3.7) then

-w + iw a + -n e + -n e iwr +bcrn* 0. 3.8

Separating the real and imaginary parts of (3.8),

w bcrn" w-n* sin wr + an cs wr }r ar 3.9
-aw w-n cos wr- n sin w7.

Squaring and adding the respective sides of (3.9),

w’ 4- w2 a2 2bcrn* 4- (bcrn*)2 --n* O. 3.10

It can be found that if

(bcrn*) > --n 3.11

a2 > 2bcrn* + 3.12

then (3.10) will have no positive w2 and hence (3.7) cannot have a pure imaginary root. By

the first of (3.5), (3.11) is satisfied. We note from the second of (3.5) and the fact

bcn* < a and n* < K 3.13

that

a2-2bcrn*-(-) > a 2ra r2

=(a-r)2-2r2 >0

3.14
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and hence (3.12) holds. Thus (3.10) has no real roots; it will then follow that (3.7) cannot

have pure imaginary roots for any positive r. We can conclude that a delay induced switching

from stability to instablity cannot take place. Thus the absolute (or delay independent) linear

stability of the positive equilibrium of (3.2) follows. This completes the proof.

We remark that without the indirect control u in (3.2), the system (3.1) can have periodic

solutions arising through a Hopf-type bifurcation for suitable delays. We have illustrated that

an appropriate indirect feedback control can be used to avoid the occurance of a Hopf-type
bifurcation and stabilise a logistic growth by structurally altering the logistic growth.

4. Feedback control with time delay

In this section we continue with a discussion of the dynamics of the system (3.1) together

with a feedback control when there is a delay in the state feedback of the control variable.

We shall consider the following system

dn(t)
dt

du(t)
dt -au(t) + Im(t- r)

4.1

in which the feedback to the stabilising control u involves a time lag r. We assume r, a, b, K, r

are positive numbers. One can see that (4.1) has a nontrivial steady state (n’, u*) where

aK bK
n* u* 4.2

a + Kbc; a + Kbc"

We shall assume that the positive numbers r, K, a, b, c, r are such that

bcK err < 1. 4.3
a

A consequence of (4.3) is that there exists e > 0 satisfying

c(bKe e) 1 4.4-g- + <.

For convenience in the following we define a as follows:

1 (bK + ). 4.
a

We shall assume that suitable initial conditions of

.() () > 0, =(0) =o > 0, ]
(0) > 0, e c[[-, 01, R+],

4.6

are provided for (4.1). One can prove by the method of steps that solutions of (4.1) and (4.6)
are defined for all >_ 0 and remain positive for > O.
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The following Lemma provides a priori estimates of the solutions of (4.1) and (4.6).

Lemma 4.1 Let be a positive number such that (4.4) holds and let (n(t), u(t)) denote

arbitrary positive solution of (4.1) and (4.6). Then there exists a T > 0 such that

e <_n(t) <_ L

m _<u(t) _< M
/’or > T*; 4.7

where

m =b - M +

(If necessar choose smMl enoush so that m > 0).

4.8

Proof. By the positivity of u, we have from (4.1) that

dn(t) { n(t- r)}dt _<rn(t) 1-
K for t>0. 4.9

There are two possibilities; n is oscillatory about K or n is nonoscillatory about K. If n(t)
is not oscillatory about K then there exists a To such that

either n(t)>K for t>To or n(t)<K for t>To. 4.10

If the second alterative holds then we have

n(t) <_ Ke for > To.

Suppose n(t) > K for > To; then

dn(t)
dt

<0, for t>T,+r

and hence for some no > 0, we have

n --, no, as oo.

One can show that no < K (the details of proof omitted) from which it will follow that there

exists a To such that n(t) < Ke for > To.

Let us now suppose n is oscillatory about K and let n(t*) denote an arbitrary local

maximum of n; then

and therefore

d(t’) < .(t’)[X .(t’- )
0= d--q-- U

4.11

n(t- r) < K; 4.12

a consequence of (4.12) is that there exists E It* r,t*] such that n() K. Integrating

the inequality (4.9) from to t*, we have
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which implies that

gn---) <_ r 1-
K

<_ r ds < r ds rr

n(t) <_ Kerr.

Since n(t*) is an arbitrary local maximum of N, we can conclude that

n(t) < n(t*) < Kerr= L 4.13

for _> To, where To is the first zero of the oscillatory n. We have from (4.13) and the second
of (4.1) that

du(t)
d"’- <- -au(t) + bL for > T, + r. 4.14

We can compare solutions of (4.14) with those of

dx,:.tt -ax(t) + bL, x(T, + r) u(To + r).
dt

4.15

It is easy to see that solutions of (4.15) satisfy

bL

Thus by comparison of (4.14) and (4.15) we can conclude that

u(t) < x(t) for > T + r.

Thus there exists a T > 0 such that

bL
u(t) < ---+ e M for > T. 4.16

a

The priori upper bounds of n and u in (4.7) follow from (4.13) and (4.16). Using these upper

bounds of n and u one can derive the lower bounds in a similar way. We shall omit the

details.

The next result provides verifiable sufficient conditions for the global asymptotic stability

of the positive equilibrium (n*, u*) of (4.1).

Theorem 4.2. Suppose that a, b, c, r, r, K are as in Lemma 4.1. In addition suppose

that the folloving holds:

(be rr)err 1
K -+- < 5" 4.17

Then all the positive solutions (n(t), u(t)) of (4.1) satisfy

lim (n(t) u(t)) (n*, u*). 4.18

Proof. Let (n(t), u(t)) be any positive solution of (4.1). By Lemma 4.1,
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dn(t) n(t -,-)< rn’,’,l- 4.19
dt "’t K

eventuMly d this will lead to the existence of t > 0 such that

n(t)(1-)Kexp 1-cm- rr =L1), for tt;

dermis of prf e silar to our diussion in the pf of ma 4.1, where 1 cm >

1 cM > O, t > T*. Replant (4.20) in the ond eqtion of (4.1), we have

du(t) < -au(t) + bL0) evemuly for lge t.
dt

As a conuence of (4.21) we obtn

(t) Lt) + q Mt) for t’, 4.
a

where t’ > t, and

0 < e < min{e,}.
Combining (4.22) and the first equation of (4.1), we have

a.(t).at > .(t) [ M(’) .(rE- )
eventually and this implies

n(t) > (1-cM(l))Kexp 1-cM()
---)rr =() for >

where t" > t’. Replacing (4.25) in the second equation of (4.1), we get

du(t) > -au(t) + Udt

eventually, which gives

4.20

4.21

4.23

4.24

4.25

4.26

for t _> t. 4.28

L()=L, M()=M, (0)=t, m()=m, e0=e,

then one can verify (for more details of the technique we refer to Gopalsamy [5] or Gopalsamy

and Ahlip [6])
(0) < (1) < n(t) _< L(1) < L()

for >
m() < m() < u(t) < M(:) < M() J

Continuing the above procedure and using induction, we can derive the following relations

among the various sequences:

Let

there is a > T* such that

e() <_ n(t) < L() I
m() < u(t) < M0)

where tl > t". Summarizing the above procedure, we know that for e satisfying (4.23),

u(t)_>be(l)-e=m() for t>tl, 4.27
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{en}; en<min{ 1 }-, e,,-I lira e,, O;

{M(a)}; M(")=L(")+
a

4.29
{1(’)}; l(’) (i cM(’))Kexp{ (i cM(.) L(’) }]rv

{tn}; thOrn-l, Um

d the above quene satiffy:

e("-)<e(")Sn(t)SL(")<L(-)
for t>t,. 4.30

m("-) < m(") u(t) 5 M(") < M(-) J
(4.29) d (4.30) together imply tt the rtiveuene converge to fite nonnegative

lits n "
lira L(n) =L*, lira M() M*, hm t() t*, lira m(") m*, ]

.’ 4.31
l*5n*5L*, m*5u’5M’,

and

We note

and derive from (4.32) that

M*=_bL*, m*=_.b*.
a a

4.32

bc 1 1
4- 4.33

a =’7

4.34

Similarly we have
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The proof will be complete if we can show that

4.35

Define functions h, g and f as follows:

The foowing identity

.)}n 4.37

is a conquence of (4.33); we have from (4.34)-(4.37) that ’, n’,L" e rts of the functionM

euation
y(). 4.3s

Note that 1 -cM" 1 RL’, > 1 *e > 0, which in combination with (4.30)-(4.31)
c be fod from our hypothes that f(0) K(1lesto: 0<g" n" L’< ." It

) (i.e. f() is upper convex function in the inteM I [0, )), then we know (4.38)
h a uque lution in I om whi it will follow that L" n" " immediately. Now we

cMculate the deritives of f(x) for x I. Dee g d g follows:

expl [1 K
for z I. 4.39

We verify by rect cMculation that for x I,

g,,(x) 2rv r72.--+() (1- x)]h(x)>O
bcK2

() ’()
bcK2

’() -g"()

Krr

y"() ()’() +( )() +
grr [ Krr [g’(x)] }a()’()t "() +

2grr ,
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But (4.17) implies

+ (1_ + 0_
K+ <1 for

d this leads to

for x E I.

Using (4.42) we derive that

4.41

4.42

4.43

which gives

-g"(=) + -f[g’(:,:)] < 0 for z E I.

We can now conclude from (4.39), (4.40), (4.43) and (4.44) that

4.44

S"(z)<O for =eI. 4.45

It is now a consequence of (4.45) that (4.38) has a unique positive root. Thus t* n L"

and hence M* u* m*. Combining (4.30) and (4.31), we obtain

and this completes the proof.

Jim (N(I) u(t)) (n* u*)

As a special case if we let c 0 in the above analysis then have

if(x) Krrg2(x){ g"(x) + rr[g’(x)] 2 }.
If we assume furthermore that the delay is small enough to satisfy

rre < I, 4.46
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then we could conclude that

and this will imply that

-"() + [’()] < 0 for z_>O,

fit(x) < 0 for x >_ O.

It will again follow from f(O) > 0 and the above that f(z) x has a unique positive root

leading to

lim n(t) K n*. 4.47

This corresponds to the global asymptotic stability of the positive equilibrium of the uncon-

trolled delay equation:
dn(t) rn(t) [1 n(t r)

4.48
dt K

The sufficient condition in (4.46) for (4.47) to hold in the case of (4.48) is the same as that

obtained by Gopalsamy [7] using Lyapunov-function type arguments.

The authors beheve that the sufficient condition of Theorem can be improved; in par-

ticular the authors conjecture that the conclusion of Theorem 4.2 holds when any one of the

following inequalities is satisfied:

K + e <1

K + <1.

or
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