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I. INTRODUCTION.

In [I] C. C. Moore proves a global version of the Frobenius Reciprocity Theorem for

locally compact groups in the case that the coset space has an invariant measure. This result,
for arbitrary closed subgroups, was obtained by A. Kleppner [2], using different methods. We
show how a slight modification of Moore’s original proof yields the general result. It is this

global version of the reciprocity theorem that is the basis for our categorical approach. (See [3]
for a description of the necessary category-theoretical concepts.)

We begin by setting up the machinery necessary to discuss the reciprocity theorem.
Next we show how, using the global version of the theorem, the functors of induction and
restriction are adjoint. The proofs of these results are at the end of the paper.

2. THE MAIN RFULTS.

Throughout G is a separable locally compact group and K is a closed subgroup. Let
G/K denote the space of right cosets of K in G and for s E G, we write for the coset

Ks. Let be a quasi-invariant measure on G/K, see [4]. Then there exists a continuous

positive function R on G/KxG such that

/C /c

for all t/G and all compactly supported continuous functions f on C//K. It is by
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exploiting the function R that we are able to avoid requiring an invariant measure on G/K.

Let p be a strongly continuous unitary representation of K on the Hilbert

space H(p). Then if ]" is a function from G to H(p) such that f(ks) p(k)[(s) for all

k K and s G, the function   IlY( )II is constant on the cosets of K in G. Therefore,
as in [1], we define H(Indp) to be the Banach space of such functions which are weakly
measurable and for which

For G define the operator Indp(t) on H(Indp) by Indp(t)f(s) f(st) R(, t). From (1)
we see that Indp(t) is an isometry. That t-Indp(t) is a representation of G follows from
the cocycle identity, R(, tta) R(tq, ta)R(, ta). Note that this is the summable induced

representation used by Moore in his result [1] except that, as indicated, we have included the

function R to compensate for the lack of an invariant measure on G/K. It is easy to see

that Ind is a functor from 2 to 9, where these categories are now described.

Let be the category whose objects consist of continuous representations of G and

’morphisms, (r,r2) the intertwining operators. That is, if r and r2 belong
to 9, a morphism T (r,,r2) is a continuous operator T:H(r,)-H(r) such that

%(s) T Tr(s), for all s G. It follows that, for fixed r, r, (r,r2) is a Banach space.
Let be the category of continuous unitary representations of K and associated morphisms,

(p,p), which are again the intertwining operators.

Let r be a continuous unitary representation of G. Then Reset, the restriction of r

to K, belongs to 2, and Res may be viewed as a functor from to . Let
B (p, Res) and, for f Indp, define, as in [1],

by the rule

tl(B).f I r*(s) Bf(s) dp().
G/K

It is shown in [I] that /(B)is a bounded linear map from H(Indp)to H(r).
G and H(r), then

G/K
I (r(t)r*(s)

G/K

(2)

Now let
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(I r*(s)Bf(sS)RO, 5)d(),)= (I r*(s)Btlndp(5)f](s)dp(),)
/K /

(r/(B)Indp(5)f, ).

Thus r(5) 7(B) ?(B) Indp(5), so that 7(B) e (Indp, r).

The global version of the Frobenius Reciprocity Theorem in this setting is

Theorem 1. The map l is an isometric isomorphism of C(p, Resr) onSo (Indp,r).

We will show, further, that r/ is a natural adjunction. We first make explicit how Ind

acts on a morphism ( C(p,,p2). Let 1" H(Indp,). Since is continuous, the function

s-,C(f(s)) [(Ind’)]](s) is measurable and

Moreover, for k K,

I < I1111
G/K /g

[(Ind)]() (f()) ((p(k)f(s)) p2(k)C(f(s)) p2(k)[(IndC)f](s).

Thus (Ind)f H(Indp).
claimed, a functor.

It is plain that

Now the naturality of the adjunction

Ind(C’)= (Ind’)(IndC’), so that Ind is, as

r/ is expressed by the following relation.

Theorem 2. Let C(p,,p) and 0%,r,). Then, for all B

o y(B) o Ind( 7(Res o B o ’).

3. PROOFS.

Moore’s proof

easily modified to
[1] of Theorem 1,

extend to arbitrary

where G/K has an invariant measure, is

closed subgroups K as follows:

Proof Modification: Let : G/K- G be a Borel cross section. Then in [I] the set S
is just the image of " and p can be regarded as a measure on S. It follows that H(Indp)
is isomorphic with LI($,p,H(p)), the space of p-measurable L1-functions from S into H(p),
see [4]. Our argument remains the same as [I] until we have to show that the map r/ is

surjective.
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So let CE (Indp,r). Then for gE LI(S,p,H(p)), it is still true that

C9= I r*(s) B(s) 9(s) dl(s) (3)
S

where sB(s): H(p)-* H(r) is a measurable, operator valued function. We need to show that

B(s) is equal to a constant B almost everywhere and that B C(p, Resr). It is this step

that requires some minor change.

In his proof Moore defines two Borel maps k(s,t) and (s,t) from S G to K and

S respectively to have the properity that st k( s, t) .( s, t). These maps can be written in

terms of r as follows: (s,t) r(-gt) and k(s,t) r(-g)tr(-gt)- ’. It is easier to work with the

map 7" and then to translate back to k and

Rewriting (3) using " we get

Following [1], for 5 G,

Cg I r*(r()) B( r(-$) g( r(-$) dtt(s) (4)
S

(t- ’)cg I*(-()t)B(-())g(-())4,(s) ()
s

and [Indp( t- ’)g](s) p(r(-$)t- ’r(t- ’) ’)g(r(-t- ’)) R(-g, t- ’) (6)

Substituting (6)into (4) gives

C[Indp(t- ’)g] I r*(r()) B(r())p(r()t- %(t- t)- ’)g(r(-$t- 1)) R,(, t-- 1) dt($).
S

Making the change of variables s-,st we get

C[Indp(t- ’)g] I r*(r(t)) B(r(t))p(r(-t)t- %()- ’) g(r())) R(-t, t- ’) R(-4 t- ’) d/(s).
S

By the cocycle identity R(-$t, t- ) R(-, t- ) I. Therefore

C[Indp(t- l)g] fTl’*(T(t))B(r(-$t))p(r(-$t)t- %(-$)- 1)(T()))
s

(7)

Equating the expression for r(t-’)Cg in (5) with that for C[Indp(t-’)g] in (7) we get, for

almost all sS and tG,

7r*(r()t) B(r()) r*(r(t)) B(r(t)) p(r(t)t- ’r()-

Rewriting this, using the fact that r is unitary, yields

r(r(t) t- ’r()- ’)B(r()) B(r(t))p(r(-$t)t- ’r()- ’).
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Now let s ’(). Then we have

-*((,, 0) B() B(e(, 0)f((, 0),

which is (,) in [1], and the rest of the proof remains unchanged.

We now move to the proof of Theorem 2.

Proof: Starting with the left side of the equality, let a-] and ]’ Indp] then

([or/(B) o Ind]f, 0 (t#[ r2*(s)B(f(f(a))dt(’),0
G/K

(I ,:(,)(f(/(,))4,(),,/:’O
G/K

I (r2*(s)B(((f(s)),’f)dp(-$)
G/K

I ((Res)r2*(s)B((f(s))’)dP(-)
G/K

I
G/K

(I q*(s)(Restp)B((.f(s))dp(),)
G/K

(rt(Restk o B o ), ).

Since f and were arbitrary, rt(Restp o B o () p o rt(B) o Ind,, as claimed.

Let us close with one consequence of the adjointness relation.

Corollary 3. Let p -. p2 be surjective. Then if I(B) o Inct =0, B=0.

Proof: For if r/(B) o Ind,’=0, then r/(B o )=0, so B o ’=0. But " is

surjective, so B= 0. E!

Notice that the adjointness relation expressed in Theorem 2 must be very carefully

exploited. For Induction is only defined on unitary representations, and produces continuous

representations, whereas Restriction can be defined on unitary or continuous representations.

Thus r/ itself converts unitary intertwining operators into continuous intertwining operators.

We hope to examine this feature of adjunction in a subsequent note, together with the

enrichment implicit in Theorem 1, where the morphism sets of C and have the structure

of Banach spaces and r/ is enriched to an isometric isomorphism (and not merely a bijection).
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