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ABSTRACT. For a complete probability space (9t, I,P), the set of all complete sub-(z-algebras

of )2, S(Y:.), is given a natural metric and studied. The questions of when 5’(Z) is compact or

connected are awswered and the important subset consisting of all continuous sub-a-algebras is

shown to be closed. Con,aections with Christensen’s metric on the yon Neumann subalgebras of a

Type II]-factor are briefly discussed.
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1. INTRODUCTION.

Let (f/, E, P) be a complete probability space and let S(I) denote the set of all complete sub-(z-

algebras of I]. We will define a metric d on 5’(Z) and investigate some topological properties of the

resulting metric space (S(Z),d). In [1], Boylan introduced a metric d’ on 3’(Z) for the purpose of

studying convergence properties of the conditional expectation operators defined by varying sub-(z-

algebras of Z. Our metric turns out to be equivalent to Boylan’s and seems to be more convenient

for study using fitnctional analytic methods.

We prove, in section 3, that (S(Z),d) is compact if and only if Z is purely atomic. We also show

that (S(Y_,),d) is connected if and only if Z has at most one atom.

In section 4, we consider the continuous sub-(z-algebras of Z and show that they form a closed

nowhere dense subset of (S(Z), d).

There is a close analogy between probability spaces and von Neumann algebras with a faithful

finite normal trace. In fact, our definition of d is modeled on a metric defined by Christensen [2] on

the set of all yon Neumann subalgebras of a Type II-factor. Christensen’s metric has been useful

in the study of the index in II-factors (see [3] and [5]). We give a short discussion of a common

generalization of our metric and Christensen’s in section 5.

2. THE METRICS.

In this section, we define the metric d and Boylan’s metric d’ and show that they are equivalent.

If Zo S(Z), then let L(Zo) L(f, Zo, P) be considered as a closed subspace of L(f, Z, P)

in the natural way. Since bounded functions are square intergrable on a probability space, we may

consider L(Z0) as a (non-closed) subspace of the Hilbert space L(f, Z,P). It is easy to check

that the unit ball in L(Z0) is closed in L(f, Z, P). The metric d is essentially the Hausdorff

metric on the unit balls in the L2-norm. Let
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L (o), {f G L’’(0) ilflloo _< 1}.

For El, E E S(E), let

d(Vl, 2) 7.J-{ sll|) inf Ilf gll2, sup inf II.f gll2}.

It is easy to check that, d is a metric on S().

For the metric d’, we use a definition due to Rogge [6] which is a slight variation on Boylan [1].

For EI,E E S(Z), let

d’(Ea,_E) sup inf P(AAB)V sup inf P(AAB).
AZ BEE BEEA

d(Boylan’s metric d" has V replaced by + and clearly 1/2d* < d’ _< d’, so and d* are essentially the

same). The arguments in [1] show that (S(E),d’)is a complete metric space.

For any Eo S(E), let 0 denote the orthogonal projection of L(,Z,P) onto L(fl, E0, P),

considered as a subspace of Lz(E). Let E denote the rtriction of e to L(E). As is well

k.own, e and E are restrictions of the conditional expectation mapping of L(fl, E,P) onto

L(, E0, P). We will use any of the well known special properties of conditional expectation

without giving references.

We now nsider the relationship between the metric d and d’.

THEOREM 1. For any E, E S(E),

d’(E,, E) d(E,, ) 22d’(,, Z)(1 d’(E,, E))

Thus d’ and d are equivalent metrics.

PROOF. To prove the left. hand inequality, fix A E. It is shown in 2.1 of [4] that

if P(AAB) is achieved at the set C {EE(XA) > }, where XA is the indicator function of

the set A. Some elementary manipulations show that

P(AC) - I- Er(XA) dP

Now II- XAII, , o
P(AC) I1 x.ll, -I E(XA)II, IIX* E(*)ll, IIX* E(XA)II*

Thus inf P(AAB) d(, ), for all A . Symmetric arguments apply for 2, which gives

d’(,,) 5 d(,, ,).

E,For the right inequality, note that, for any f E L(), (f) f and E*(f) is the (L-norm) closest element of L(E) to f. Thus,

sup inf Ilf-gll sup I[f-E(f)ll, g sup IIW’(f)-E(f)ll,
lL(hai() IL() fL(h

Similarly for the other term in d(E, ), so we have the inequality

(,,2:) p IIE’(f)-S(f)ll

However, for any .f L’() the function f’ (1 + f) takes values in [0, 1] almost everywhere
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and theorem 3 in [6] shows that

Thus,

lIE-’ (f’) E2(.f’)[[2 <_ v/2d’(E,, E2)(1 he(E,, Z;))

lIE"’ (.f) E(/)II _<

This completes the proof of the theorem.

COROLLARY. The identity map is a homeomorphism of (S(E),d’) with (S(E),d).

REMARK 1. Not only arc d and d’ equivalent in the sense that they define the same open scts

in S(E), but the same sequences are Cauchy in each of (._q(E),d) and (S(E),d’). Since (S(),d’) is

complete, we have that (._q(S).d) is a complete metric space.

REMARK 2. The right hand inequality in theorem cannot be improved to one of the form

d _< kd’ for some positive constant I,’, as is shown by the following example.

EXAMPLE. Let 12 [0, 1], with P denoting Lebesgue measure on Z, the Lebesgue measurable

stbsets of [0, 1]. For each a > 0, let E denote the a-algebra generated by an atom [0, a] and

El"l(a, 1] {B - S C (a, 1]}. For any A , let B Af’l(a, 1] and B [O, a] U(A l"l(a, 1]).
Then B,B fi E, and either P(AAB) or P(AAB) is less than or equal to . If A [0, ], then

P(AAB) > , for all B E, Thus d’(E,, E)=
To compute d(E,Z), note that, for any f L(E), the function f..(,,,] is in L(Y:.o) and

]]f f.Y(.]]l -< . On the other hand, if f .([0,]- .X(,,], then Eo(]) 0 almost everywhere.

This implies that ]].f- gll -> ll.f[]2 v/. for any g ( L(E,). Thus d(Zo, E) yrs.
With E E, and E , the inequalities in theorem become _< _< 2-() (_<

’). Thus no k exists with d(Z,, E) _< kd’(,E) for all a (0,1).
3. THE MAIN RESULTS.

We consider the metric space (S(), d) and establish the following two theorems. Since (S(), d’)
is homeomorphic to (S(F_,),d), these characterizations hold for either metric.

THEOREM 2. (S(F_,),d) is compact if and only if :E is purely atomic.

THEOREM 3. (S(F.,),d) is connected if and only if has at most one atom.

Before proving these theorems, we need the following lemma which is a folklore result of measure

theory and can be proven with an easy application of Zorn’s lemma.

LEMMA If (X,.T’,u) is a finite measure space with no atoms, then there exists a map F"

[0,1] .T" such that F(s) C_ F(t) and ,(F(t)) tI(X) for all s,t . [0,1] with s _< t.

We will use the notation, for A E and

Ao {AB" B c= 0}

PROOF OF THEOREM 2. Assume that (12, E,P) is not completely atomic. Let fie and
12 be the continuous and atomic parts of fl respectively. We are assuming P(fl) > 0. Let
F [0,1] E be such that F(I) C_ 12,P(F(t)) tP(fl), and F(s) C_ F(t) for s,t . [0,1],s _< t.
Define F[s,t] F(t)\F(s) and let
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A,, U{ F[(k )/2"-’, {2k I)/2"] k 1, :2 ,2"-

for each n 1,2,... Then P(A,,) P(f/c)/2, for each n and P(A,AA,,) P(f/c)/2, for n - m.

Let E, debote the a-algebra generated by A,, f] E and the atom f\A,, for each n. Let f denote the

indicator function of F/\A,. Then f E L(E,,) and for any 9 5 L(Em), if m n, then 9 differs

from f by at least 7 on either (F/\A,,) CI A, or (f\A,)f’l(fl\A,,). Each of these sets has probability

P(flc)/4. Thus Ill 91122 _> p(flc)/16, which implies d(E, E,,,) _> /P(fc)/4, if n -fl m. Hence, the

sequence (E,,),,__ has no cluster points and S(E) is not compact.

Conversely, suppose (f,E,P) is completely atomic. Since (S(.,),d) is complete, compactness

will follow if we show that S(E) is totally bounded. If E has only a finite number of atoms, then

S(E) is a finite set and obviously compact. So suppose {A, A2 are disjoint atoms generating

E. For > 0, choose N such that :__N+ P(A,,) < . There are only a finite number of algebras of

sets contained in the algebra generated by {A A2v }. Let .A,..., ,4 denote these algebras. For

< j < k, let denote the a-algebra generated by ,4j and {AN+I, AN+,. ..}. Let A

For any ’ S(E) A Iq ’ .Ai for some j, < j _< k. Then ’ C_ E and it is easy to check that

d(E;, Zj) < c. Therefore, S(Z) is covered by the finite set of -balls centered at , < j < k. Since

c > 0 was arbitrary, S(E) is totally bounded.

PROOF OF THEOREM 3. Suppose A and B are two distinct atoms in . Let S’ denote

the set of all E0 in S(E) which have an atom containing both A and B, let S denote the set of all

0 in S(Z) which have two disjoint atoms containing A and B, respectively. It is easy to see that
S(E) S [J S. Let S and E S. Let A’ and B’ be disjoint atoms of E containing A and

B, respectively. Let C be an atom of El which contains AI.JB. Let f XA’ X’ - L() For

any g L(Z),g a, almost everywhere on C, for some constant a, lal < 1. Thus

IIf gll > fA If glde +/ If glde

/( -a)P(a) + ( + a)P(B)

> /2min{P(a),P(B)}

Therefore, d(,E) > /min{P(A),P(B)}, for all r S and Z E S. Notice also that the

trivial o-algebra E {f, 1} S and E S. So S and S are nonempty disjoint open subsets

of S(E) with union S(E). Hence, S(E) is not connected if there are two or more atoms in ).?,.

Conversely, suppose (f/, E, P) has at most one atom. If there is an atom, call it A and if there

is no atom, let A . If P(A) 1, then S(E) is a one point space, which is connected. So assume

P(Ft\A) > 0. We will show that any E0 S(E) can be connected to E; by an arc in S(E).
First assume E0 S(E) and E0 is completely atomic, generated by the disjoint atoms A0, A,...

(a finite or infinite collection). We may assume A C_ Ao. For each n _> 1, by the lemma, there

exists F,, [0,1] A,,f’IE such that P(F,(t)) tP(A) and F(s) C_ F,(t)if s,t [0,1] with

s < t. Similarly, let Fo [0,1] A01DE be such that F0 is increasing and P(Fo(t)) P(A) +
tP(Ao\a), for all [0, 1]. For each [0,1], define Z(t) S’() as the r-algebra generated by

{F,(t)CIE, A,,\F,(t)’n 0,1,2 }. It is clear that E(0) Eo, E(1) E and E(s) C_ Z(t)if
s_<t. Fixs, t[0,1]withs<t.
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For any .[ 6_. L((t))l and for each , 0, 1,2,..., f is constant, say a,,, almost everywhere on

the atom .4,,\F,,(t)i,, E(/). Define g E L’’(E()),, by making 9 a,, on A,,\F,,(s) and 9 f on

Fn(s), for n 0, 1,2 Then f and y differ only on U(F,,(t)\F,,(s)) and there by at most 2. Now

P{(F,,(t)\F,(s))) (t s)[P(Ao\A) + P(A,) + P(A2) +...]

Th I1- 11 <

This implies that d(V(s),V(t)) < 2 //-’Z-s. Therefore, any atomic element :E0 of S() is con-

nected by an arc to v

If :E0 is not completely atomic, let f tic (J fl, where flc["l 0 is continuous and fl :E0 is

atomic. Let :E be the atomic a-algebra generated by an atom equal to fie and fl ]0. By

method similar to the above, but just working with fie, an arc from :El to :E0 can be found. Also,

being atomic is connected by an arc to . Thus any element :E0 of S(:E) can be connected by

an arc to :E. Therefore S() is connected, in fact, arcwise connected if (fl, :E, P) has at most one

atom.

The two theorems of this section show that there is some meaningflfl connection between the

topology of S(:E) and the structure of the original probability space. Since this topology is really an

embodiment of the equiconvergence property for conditional expectations, we feel that S(:E) with

this metric d (or if one prefers d’) will provide a good locale for studying conditional expectations.

4. CONTIIIUOUS SUB-a-ALGEBRAS.

Let S(:E)= {0 6 S(:E)’ (fl:E0, P)has no atoms}, the space of continuous sub-a-algebras

of E. Of course, if is not a continuous a-algebra, then S() . On the other hand, if :E is

continuous, then S(:E) is a very rich set to look at. For example, if G is a group of :E-measurable

transformations of 12, let denote the a-algebra of G-invariant sets in . If G is a finite group,

then e S(:E). This provides a way in which to construct many interesting examples of elements

of S(:E). In spite of this, Sc(:E) is a "small" subset of S(:E).
THEOREM 4. S(E) is a closed nowhere dense subset of S(]).

PROOF. We first observe that if :E0 E S(:E) and A E, then

{P(AB)" B e :Eo} [0, P(A)].

Now fix e S()\S(:E) and let A be an atom of. By the above observation, for any :Eo e
there exists B e :Eo such that P(A["IB) 1/2P(A).

Let f X -Xu\ L(0). For any g L(F,),g is constant on A and one easily checks

that

Ill- gll2 >-(P(A))/:.

Thus d(:E0, :E) _> (P(A))/ for any 0 e S(:E). Hence S()\S(:E) is open and S(:E)is closed.

To see that S(]) is nowhere dense, let :E0 E Sc() and e > 0. Choose A " :Eo such that

0 < P(A) < e. Define :E to be the a-algebra generated by A and {B :E0" B C fl\A}. Then

has an atom A. For any f L(:E0), let g Xu\Af e L(:E). Since Ill- gll] f.a Ill <- P(A)
and :E C :E0, we have that d(0, E) _< (P(A))/ < e. Combined with the general estimate above,
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for this particular E0 and 1, d( x",-,o,) (P(A))/ Thus the open ball of radius e centered at E0
is not contained in S.(E) for any > 0. Since 5’c(E) is closed, it is nowhere dense in S().

Thus (So(E), d) is itself a conplete metric space whose topological properties should be inter-
esting to study. We do not consider such a study in this paper.
5. CONNECTIONS WITH VON NEUMANN ALGEBRAS.

There is a one-.to-one correspondence between the sub-a-algebras of E and the yon Neumann

subalgebras of L(2, E, P). In this section, we assume the reader is familar with the basic theory

of von Neumann algebras as found in a reference such as Sa"kai [7].
Let .M be a fixed finite yon Neumann algebra with a distinguished faithful, finite, normal trace

r. For example, .M could be L(,E,P) or a Type lI-factor. Let S(.JM) denote the set of all yon

Neumann subalgebras of 21 which have the same identity as .A4.

In the case that .M is a Type ll-factor, Christensen defined a metric on S(.M) in [2]. He

showed that S(AJ) then became a complete metric space. He used his metric to study perturbation

properties of subfactors and his metric has also been used in the study of the index of a subfactor

in a Type II-factor (see [3] and [5]). Christensen’s definition works well in the situation we are

considering. For x .A4, let IIllz 9r(’) For A/, S(.A4), let A/’ and denote the unit

balls in A/’ and , respectively.

Then define

d(A/’, ) max{ sup inf x YlI, sup inf IIx YlI}

It is routine to check that d is a metric on S(.A4) and Christensen’s proof that S(.A4) is complete

carries over to this more general situation.

Some of the proofs of section 3 can be adapted to the yon Neumann algebra situation but not

all. We list below what we can prove and leave the details of the adaption of the proofs to the

interested reader.

THEOREM 5. Let .A4 be a finite yon Neumann algebra with a fixed faithful, finite trace

r. With the Christensen’s metric, S(.M) is compact if and only if .A4 i.s generated by its minimal

projections.

PROPOSITION 6. If S(./t4) is connected, then .A4 has at most one minimal projection.

OPEN PROBLEM Is the converse of proposition 6 true?
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