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ABSTRACT. In this paper we establish some new approach to constructing

convolution for general Mellin type transforms. This method is based

on the theory of double Hellin-Barnes integrals. Some properties of

convolutions and several examples are given.

KEY NORDS AND PHRASES. Convolution, Mellin-Barnes Integrals

G-transforms,

1991AHS SUB3ECT CLASSIFICATION CODES. 44A35, 44A15, 33C40.

1. INTRODUCTION.

As is known from [1], the following operators of Mellin typ

convoI ution

x u)du x>O (1.1)(Kf)(x) k(---) f( u
o

define a sufficiently large class of integral operators. In

particular, if k(x)=e-x, then formula (1.1) defines the modified

Laplace transform (/+f) [2]

(A+f)(x) e-x/Uf(u) dUu
0

(1.2)

which leads to classical Laplace transform (Lf) [3] with the

following convolution
x

(f=g)(x) f(x-t)g(t)dt
0

and the factorization equality

L

(L(f*g)) (x)=(Lf) (x) (Lo) (x).

(1.3)

(z.4)
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Recently we [4] have developed a method of generalization of the

Laplace convolution (1.3) on Mellin LYI:> transforms (1.1). It can be

effectively extended to the integral transforms with G-function in

kernel and Bore general G-transforms 5 ]. In this case the

factorization equality of type (1.4) takes the following form

(K1 (f’g)) (x)= (Kzf) (x) (K3g) (x), (1.5)

here (fg)(x) is general convolution which is defined below for three

operators (K1,K2,K3). Zn case of classical Laplace transform it is the

set (L,L,L), for G-transforms it is (G1,G2,G3) (see below).

In this paper we consider some properties of these convolutions

in special spaces and their various integral representations. By this

method one can obtain the known convolutions and many new examples.

2. SOHE FUNCTIONAL SPACES, G-TRANSFORH AND ITS PARTICULAR CASES

In this section we will consider generalization of the Mellin type

convolution transform (1.1) by Hellin-Parseval equality [2]
"+ ic

1 * f*(Kf)(x) 2=i k (s) (s)x ’ds, (2.1)

where * denotes the Nellin transform of functions k(x),f(x)

f (s) f(x)x-ldx, (2.2)

0

(-i,/i) is some vertical contour in the complex plane s. Thus the

transform (1.1) can be studied with aid of asymiptotic of function

k=(s) and f=(s) on the contour o (-i, /i=), in particular, hen

o= {s, Re(s)=7=l/2}.Our main aim is to consider transforms of the form

(2.2) which are convenient for our further studies.

Thus the behaviour of the functions k=(s) and f=(s) on the contour

o can be observed from the fact that their inverse Hellin transforms

belong to the space of functions -I(L) [5]. As is shown below this

space is very convenient for the studies of transform (2.2).

DEFINITION 1. Denote by E (L) the space of functions f(x), x

(0, +), representable by inverse Helln transform of integrable

functions f*(s) L(O)=L(o) on the contour o:

f(x) f*(s); x 2i

--1
The space (L) ith the usual operations of addi tion and

multiplication by scalar is linear vector space. If the norm in
-1 (L) is introduced by the formula

HfI-I(L) [If*(l/2+it)ldt, (2.4)

then the space -I(L) is a Banach space.

Now we consider main properties of the space ’1(L).
-1 -1

1) f(x) e -(L) if and only if x f(x e " (L).

This property follows from the fact that the functions f(x) and
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x f(x- ) are the inverse Hellin transforms of the functions f (s)*and
* f* *f (l-s) respectively, But the functions (s) and f (1-s) either both

belong to L(o) or none of them belong to L(o).
2) If f(x) e -l(L) then x (x) is bounded uniformly, continuous on

1/2
(0, +=) and furthermore x f(x)= 0(1) when x-> and x--> O.

This property follows from the Riemann Lebesgue lemma
1/23;) If f(x), g(x) Z-(L) then x f(x)g(x) -(L).

1/2This fact follows from that x f(x)g(x) is the inverse Mellin
1 J (t) (s-z/l/2)dz which belongs totransform of the function 2i f* g*

L(o) by Fubi-ni theorem. Here g(x)= -1 (s); x

-1/2g4) Let f(x) e I-I(L) and x (x) e L(B+).Then

belongs to (L)
x d__ug(u) f(G) u -0

In fact by the property of the Mellin convolution this integral is

the inverse Mellin transform of the. function f*(s)g*(s) and since

f=(s)E L(o) and g(s) belongs to space of essential bounded functions,

hence f (s)g*(s) L(o).
As is known by [1] the Mellin transform of G-function is the ratio

of products of gamma-functions and according to asymptotic expansion

of gamma-functions this ratio has power-exponential behavior on the

contour o. Therefore it is necessary to take into consideration this

fact in the spaces of, -(L) type.

DEFINITION 2.[5]. Let c,7 I be such that

2sgn (c) + sgn ()_>0. 2.5

Denote by ,(L) the space of functions f(x), x e (o, +,),

representable by the inverse Mellin transform (2.3), where (s)lsl x
xe E L )

Note that f=(s)lsleol’’"lelL()l f and only f f=(s)lslZe=l’le
L(), and in this case the integraZ in (2.3) converges if c>O, 7 B,
or c=O, 7>0, ehich is equivalent to (2.5).

sce (L) is Banach sce ith normThe

fM- (L) ecl’sl isZf*(s) lds (2.6)
c,7

Zt s oous that the sce - (L) n case C:O, :0 coincidesc,7

eth the sce -(L).
DEFINITION 3. The G-transform of function f(x), x>O, is defined as

(Gf)(x)= Gm’n ()p o f(u) (x): 2i i(s) (s)x-ds, x>O, (2.7)
P’ql() o

where o:{ s e , Re(s) 1/2 }, O<_m<_p O_<n<_q,

m n
+s) T-T r(z--s)T r (e

(s) J" (2.8)P q

T-T r (+s) T r(z-p-s)
j=n+l j=m+l
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Re (/j)+l/2>O,,j 1 m; 1/2-Re((x ) >0, ,.i=1 n;

Re((xl)+l/2>O,, n+l p; I/2-Re(.BI)>O, j=m+l q

DEFINITION 4. The ordwred pair (c*,*), where

(2.9)

* P/q = Re Gj-C =re+n-
2 .1

is called the index of the G-transform (2.7)

(2.10)

THEOREN 1.[5]. The G-transform with the index (c*,?*) exists on the

space I"c,(L) if and only if

2sgn(c+c )+sgn (+ )>0. (2.11 )

In this case the G-transform maps 1 (L) isoorphically into

X+X
No e see that the inversion of G-transform (2.7) is also

G-transform and it can be written as follows

-1

/ q, (o),; ()
q

g(u) (x)=
()

xil (s)l g* (s)x-eds (2.12)

o
The following theorem represents our G-transform defined by contour

integral (2.7) in the traditional real form. The proof is obvious from

the Hellin type convolution (1.1).

THEOREH 2. Let

2sgn(c:’I’:) + sgn (?* 1)>0, (2.13)

then the G-transform (2.7) ith the index (c*,*) can be represented

in the real form (1.1) as follows

(Gf)(x)= ,J’G; "n ((X)p f(U) du (2 14)

o
"q

x (s)x- ds is Heijer’s G-function [1]
p, q

(j) qj
2i

<7

Here the existence of the G-transform (2.7) is guaranteed by

(2.13) and inequality (2.5) in Definition 2 of I-1 (L) (see alsoc,
(2.11) ). Theorem 2 shows that inequality (2.13) provides the

convergence of integral which is used for definition of Heifer’s
G-function.

REHRRK 1. If inequality (2.13) is replaced by

4sgnCc*) + 2sgn(?*) + sgn IP-ql > O,

then the statement in Theorem 2 is also true (see [5]).
Further,since the Pleier’s G-function is rather a general function,

its particular cases lead to a number of corresponding transforms.

Here e give a table of those transforms hich are required to study
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the convolutions. For convenience we introduce the following notations

of transforms (see [2]).

k(x) f(u) k(-G-)f(u)--G- 2i k*
o L

x du
x k(x) x-f(x)x=k (x) f(u) k (----) f (u) u

o

(xk (x)x-) (f) (x), (2.16)

k(x) f(u) 2i k*(s)
L

xCk(x) f(u) 2i k* (s+)L
Now we give a table of the definitions of important simple

G-transforms in the forms (2.15)-(2.18), where the function (s)

(k=(s)) is defined by (2.8) such that p+q_<2. These transforms are

special Bodifications of known classical integral transforms and their

inversions (Laplace transform, Hankel transform, Stieltes transform,

Riemann-Liouville differintegral operators, Heifer transform).

The more general particular cases of G-transforms, which will be

introduced in section 4, can be easily obtained from (2.15)- (2.18) by

using the table of Hellin transforms and representations of the

kernels k(x) through Heijer’s G-function [6].

TABLE 1

SIMPLE ZNTEGRL G-TRNSFORHS AND THEIR INVERSIONS

Hodified Laplace transforms

G’0 f(u) (x): f(u) A+f(x)= s-uf(u) (2.1
0,1 0

o

GZ, o f(u) (x)= f(u) A_f(x)= e
-(/’) du

o

f(u) x x-ef(x) e- u-el(
_

(2.21)

0

,1 0 L (2.22)

] (u) Ae-() 2i )

Hodified Riemann-Liouville differintegral orators
and their inversions

o, f(u) (x): r ()
f(u)GI’I 0

(_u)_ -r() u (u)du, Re()>O

0
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x
d

n-1

dx"
; (x-u)/ -fr(=*n) u (u)du
o

-n<Re()<-n+l or Re(x): -n,

I(o)#O, n:t,2,3

f(u) (x):G1 1
0 r () f(u) :z =_ (x-f(x)):

J" (u-x)=-
r(,)

d
r(+n)

x

u-Xf (u)du, Re (=) >0 (2.24)

u (u)du -n<Re(=)<-n+t or Re(=)-- n,

Im (=)0, n:1,2,3 (2.25)

}"I ]f(u) z (x-f(x)):z+/-(x (x))
r ()

(2.26)

Hodified Hankel transforms and their invers-ons

2,0
0

2 z, -u/z f(u) (x): 3p(2/-) f(u)

Sin- and Cos- transforms and their inversions

(z. :9)

(2.o)

[’jsin(2__)f(u)duGO,2 ,0 f(u) (x): :n(2)/’) f(u)

o (2.)

G2, 0 f(u) (x) in(2x
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’sin(2)f (u)dU
o

112

--1

1 cos(2)f (u)dU

f(u) (x): sin(2V--)

x sin(2x ) f(u)

0 /2 f(u) (x)=-=---cos(2y/---) f(u)

x cos(2x ) f(u)

f(u) (x) in(2x-2) f(u)

x sin(2--) f(u)

0 f(u) (x)= I cos(2x-l/2) f(u)

x cos(2V-) f(u)

(2.33)

(2.4)

(2.35)

(2.3;6)

(2.37)

(2.30)

Hodified Stieltjes transform and its inversion

s,,, ) f(u) (x) r()(+x)-

uPf(u) dur(O)

0
(x+u)O u

,1 1 P -P-t
,1 ; f(u) (x) r(p)(l+x)

2,0
GO,2

1 " f*2{i r(s)P(o-s) (s)x Sds
L

Plodified Pleijer transforBs and their inversions

f(u)]

(2.3;9)

(2.40)
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2Kt)(2/ X/U "f(u)dU
u

o

0,2
-/z,Z./z

2 =2K=,(2 u )f uG2 0
f(u) (x)= 2K f(u) /x (u)du

0

(2.41)

(2.42)

,2 /2,-/2 f(u) (x) 2Ku(2V’- f(u)

1 1
2i F(s+/2)F(s-p/2) (s)x-Sds

L

2
Z-p/z, Z+u/z 2 f(u)G

0
0

f(u) (x) 2K

(2.43;)

1 ]" 1 f*2/[i r(s+/2)r(-s-u/2) (s)x-’ds (2.44)

L

3;. DEFINITION AND RAIN PROPERTIES OF CONVOLUTIONS FOR MELLIN
TYPE TRRNSFORS

No e consider the Laplace convolution (l.3)if f(x), g(x)

I-(L). By Definition 1 substituting representations (2.3) for f(x),

g(x) in (1.3), changing order of integration and using the

beta-integral we can represent (1.3) in its equivalent form-

(f=L xg)(x) z F(2-s-t) (s) (t)x -tdsdt, (3.1)
(2i) o o

where o x o ={(s t) E z Re(s)= Re(t):1/2}
For Laplace convolution (3.1) e have the folling result.

THEOREM 3. The classical Laplace convolution (f=g(x) (1.3) exists for

all f(x), g(x) -(L) and it sseses the fatorization prorty
-112 L(1.4). Zn Lh case x (f.g)(x) E I- (L).

POF. From (3.1) L fotlows LhaL the Laplace convoZuLon (fg)(x)
exists f and only f

r(z-s)r (z-t) f* g*
r(2-s-t) (s) (t) E L(osx Or).

Using the representation for the beta-function we obtain that

(3.2)

r(z-s)ro-t) o(I) hen s t-->(R) (s t) e o xo (3 3)r (2-s-t) t"

Bt by Definition 1 it follows that f*(s) g*(t)E L(osxot).Hnce
the condition (3.2) holds valid. Further by the substitution =s+t-I/2
representation (3.1) can be written in the following form:

x/Z -x I f* g*(f=Lg)(X) [ d 2i r(1/2-+t)r(l-t) (-t+1/2) (t)dt,
r(3;/2-)

1

0={: e , Re()=Z/2}. (3;.4)re
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Hence it follows that x (.g)(x) (L). Now by an appeal to the

classical Laplace transform

(Lf)(x) e-XUf(u)du
0

and the convolution (3.1) it is not difficult to obtain the property

(1.4) Theorem 3 is proved.

The representation (3.t) for Laplace convolution can be modified

and generalized on the G-transform (2.7).

DEFZNITION 5. Integral convolution (f*g)(x) for two functions f(x) and

g(x) for .the set of three G-transforms (G1,G2,G3)is defined as the

following integral.

1 Hl(S+t)Hz(S)H3(t) * g*(f*g)(x)
)’2ni’2

f (s) (t)x--tdsdt,x>O, (3.5)

where H (s), j 1,2,3 are the corresponding kernels of G-transforms

(G f)(x)which are defined by the following relations:
m.

( +s, -(.J )- n,r(+s)n,r(-.-)
Hj (s):r "j (.6)( )+s -( )-s r(,s) r(-PJ qj k=n +1 +1

Thus by Definition 5 e see that for each convolution defined by (3.5)

there corresnds the ordered set (G,G,Ga)of G-transforms and vice

versa. Hence e obtain the fami Zy of integral convol utons for

corresnding G-transforms. As is known froa [5], the coBsi[o

G-transform s also G-Eransform. Hence e can noEe some algebraic and

sCructural prorties of these convolutions (see 1o).
-1

HEOREH 4. Let f(x), g(x) (L) and for Nraaeters of the

H.(s) =1 2 3 and H(s+1/2) the corresndng conditions (2.9) hold.

Let further,

Sup [1 (S t)lexp(-c(lsl+lt I)) Istl-7]<+, (3 7)
(s t) E o xo

here (s,t) [Hl(S+t)]-H(s)H3(t).Then the convolution (3.5) exists
1/2

and x (f=g)(x) t (L).

PROOF. By condton (3.7) and Defnton 2 J t fol los tha

(s,t)f*(s)g=(t) L(osxot). Hence e rJte the ntegral (3.5) Jn the

following form (see 3.4).

-1/2 --[

(f*g)(x)
2wi 2i H_(l/2+r-t)f* (1/2+;-t) H3(t)g*(t)dt,

H1(+1/2) o (,:3.8)

and using Definition I the proof of Theorem 4 is completed.

THEOREH 5. Let the conditions of Theorem 4 hold and moreover the

following inequalities hold

2sgn (c+c)+sgn (+1)> 0 j=2 3
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where c i=2,3- indices of G-transforms with corresponding

kernels (3.6). Then the factorization equality of type (1.5)for the

G-transforms set (G1,G,G3) is true

(G1 (f-g)) (x): (Gz f) (x) (G3g) (x),

where
def

-lZ _(t1z(Gf)(x) x f)(x)
112

in case x f(x) (L), and G-transform G has the

kernel H(s)=H(s+I/2).

PROOF. By the property (3) of - (L) and Hellin-Parseval equality
1/z

f) (x) (G3g) (x) is the(2.1) we notice that the function h(x)=x (G z
inverse Hellin transform of the t-integral of (3.8). Further the

condi Lions of Theorem 5 provide the existence of G-transforms

G ,j=2,3.

NOW we apply Gl-transform to convolution (3.5) and obtain the

corresponding factorization equality.
-112THEOREH 6. Let (s,t) L(osxot)and f(x), g(x) - L(x ,1+)

112(X l/2f(x), X- g(x) E L(l*)).

Then the following real representation of convolution (3.5) holds-

(f=g)(x) S -- - f(u)g(v)
2

dudv
MV

(.9)

S(x,y) (s,t)x y dsdt.

The proof of Theorem can I: obtained by Fubini theoreM.

(3. 0)

Now consider the convol utions in form (3.9), where the

corresponding kernels S (x, y) depend on the sum and maximum o f

variables x,y. As it is known from [7] (s,t)= k=(s+tB(s,t) (for sum)

and (s, t) (s+t)k* (s+t)s- t
-1

(for maximum). In the first case

HI(S)= =k (s)
1Hz(S)=H3(s)=(s) and in the second case Hi(s)= = ,H (s)=H3(s)=s

s k (s) z

where k=(s) is. Hellin transform of some function k(x) such that
-1/2

kh(x)=x (x) belongs to the space I [8] of integrable functions on

arbitrary segment [,E], O<-<E<,. Further the integral

h*(s) Ih(x)x-dx, s o, (3.11)
0

converges, i.e.there exists a constant C>O, for which for all , E>O

and t E R

E
t-11

k(x)x Zdx < C. (3.12)

1/2
kREHARK 2. In particular, if k(x) - L(O,), then h(x)=x (x) !.
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tkTHEOREM 7. Let f(x),g(x) c (L), x (x) . Then the following

integral representations of type (3.9) for convolutions(3.5) (f*g),(x)
and (f*g)max(X) are true

l" I u+v 1 (3.13)(f’g) (x) k x f(u)g(v) dudv
UV UV

(f*g)max(x) k x max {u ,v } f(u)g(v) dudv (3.14)
2

uv
R

The proof of Theorem 7 can be obtained by Fubini theorem and using

of the following identities [7]
s-1B(s, t)k*(s+t)= k (x+y)x y dxdy, (3.15)

2
R

S+t k*(s+t)= k(max{x,y}xs-st y -dxdy. (3.16)

y Thor it i not

(G+(f*g)/)(x)= (A+f)(x)(/+g)(x), (3.17)

(G,ax(f*g)(x)=(Zlx-l)(f)(x)(!_ _lx’l)(g)(x), (3. le)

where G-transform G and G have the kernels as indicated above

and operators in right parts of (3.17), (3.18) are defined by Table I.

Now we consider some estimations of norms for convolutions (3.13),

(3.14) in traditional L-spaces.
-112 -l/ZgTHEOREM 8.Let k(x) L(O,-) and f(x),g(x) L(x ;O,-).(x (x L

(0,)). Then the convolutions (f*g)/(x),(fg),ax(X) - L(O,) and the

following estimations of norms are true

L(R L(x ;R

(.9)

The proof of Theorem 8 can obtained

folling chain of inequalities and equalities.

ok x max u- ,v- } f(u)g(v), uv
R

< Ik(x)Idx min{u v}lf(u)g(v)I dudv
UV

2uvlk(x) Idx 2m&u,v} f(u)g(v) dudv

2
UV

<2 ’k(x)ldx uv-1 f (u)g(v)

R R



446 S.B. YAKUBOVICH AND S.L. KALLA

dUdVuv _< Ik(x) ldx lf(u)g(v)l, dudv, Ik(x)ldx lf(u)l
,/ Uv uR R R

du
lg(v)

dv.

EXAMPLE 1. Let k(x)=2Ko(2 /)be MacDonald function [1]. Then the

corresponding convolutions (3.13), (3.14) and their factorization

eualities can I ritten in the fors

2
UV UV

( /\ (f’g) +) (x) (^/f) (x) (/\/g) (x), (3.20)

(f’g) (x)-- 2 Ko 2 x max{u v f(u)g(v)dudv

2 UV

2xt/2K (2-) g)ma (U) (Ilx 1) (f) (x) (11 -1

4. SOME EXAMPLES OF CONVOLUTIONS AND FACTORIZATION EQUALITIES

In this section we give a table of examples of integral convolution by

real representation (3.9) with S(x,y) as hypergeometric function of

two variables (Horn functions)[9]. Some other Horns functions can be

defined by the use of G-function of two variables [4]. The sets of

G-transforms in factorization equalities follow from Table 1 and table

of Mellin transforms in [1], [6].

TBLE 2

e W 1-e’-’ x’- (g)(x). (4.2)

o o

x
f (u)g(v)dUdvv uv

(x-/_ lx( ( f*g ) (x) :’() ) (x){,F, (’" Z’--x)} (g)
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(,,,(f*g) (x)= F, u v
dudv

uv

}- (o+)/2-(o+)/2. 2
x )(f*g)(x)= r()r( )(x K_( ,,z r()r()2 x

x(x (--7’-(f)(x) (x

x{a,_1(2x112)} x )(g)(x). (4.4)

447

x x ) f (u)g(v)dUdv
U V MY

(x1-I o-]’xi’-.)(f=g)(x) r() [(
r()t z+x)-C}(f) (x) A+ (g)(x).

(f*g)(x)= @2 ()’’ " u
o o

x ) f (u)g(v)dUdvv My

(x-XA_xX)(f*g)(x)=r() (z+x) (f)(x) (1+x) -’ (g)(x).

x x
f (u)g(v)dUdv

u v My

(x-’A_x’) (f’g)(x)=r()){(].+x)-/} (f)(x)A/ (g)(x).

x x ) f (u)g (v,)dudvuvv

---)I F (/;7"-x)}(f)(x)(x-A--Ix) (f’g) (x)-r() (x (1-’)/2

xl3 (2x’/z } (],’-1)/,_ ) x (g) (x).

)f(u)g(v)dudv
uv

-(A-_ Ix(x (f*g) (x): r() (x (I-7)/2

(4.5)

(4.6)

(4.7

(4.8)
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x f3_l(2Xl/Z)t X(-I)/Z)(f)(x)(x(1-" )/2
x

x(3 (2X1/2 t X(’’--1)/2_
) ) (g) (X).

(f*g)(x)= ’=’1 (’="P’ ;- - v uv
o o

(x-il’A_x’) (f’g) (x)=[’(
r(,/2+ ;s )r(*+ )

r()r()

(4.o)

x No, p_a ( ) (f)Cx) A+Cg)(x). (4.11)
2
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