A TYCHONOFF NON-NORMAL SPACE

V. TZANNES

Department of Mathematics University of Patras Patras 26110, Greece

(Received July 13, 1992 and in revised form February 3, 1993)

ABSTRACT. A Tychonoff non-normal space is constructed which can be used for the construction of a regular space on which every weakly continuous (hence every θ -continuous or η -continuous) map into a given space is constant.

KEY WORDS AND PHRASES. Tychonoff, non-normal, weakly, θ -, η - continuous maps. 1980 AMS SUBJECT CLASSIFICATION CODE. 54D15, 54C30.

1. INTRODUCTION.

We construct for every Hausdorff space R a Tychonoff non-normal space S such that if fis a weakly continuous map of S into R then there exist two closed subsets $K', L', K' \cap L' = \emptyset$ such that $f(K') = f(L') = \{r\}, r \in \mathbb{R}$. Therefore, applying the method of Jones [1], we can first construct a regular space containing two points $-\infty$, $+\infty$ such that $f(-\infty) = f(+\infty)$, for every weakly continuous map f of this space into R and then, applying the method of Iliadis and Tzannes [2], a regular space on which every weakly continuous (hence every θ -continuous or η -continuous (Dickman, Porter and Rubin [3])) map into R is constant. The construction of S is a modification of the space $T_1(R)$ in Iliadis and Tzannes [2]. For regular spaces on which every continuous map into a given space is constant see also Armentrout [4], Brandenburg and Mysior [5], van Douwen [6], Herrlich [7], Hewitt [8], Tzannes [9] and Jounglove [10]. A map $f: X \to Y$, where X, Y are topological spaces is called 1) weakly continuous if for every $x \in X$ and U open neighbourhood of f(x) there exists an open neighbourhood V of x, such that $f(V) \subseteq \operatorname{Cl} U$, 2) θ -continuous if for every $x \in X$ and open neighbourhood U of f(x), there is an open neighbourhood V of x such that $f(ClV) \subseteq ClU = 3$ η -continuous if for every regular-open sets U, V of Y,

$$(i) \quad f^{-1}(U) \subseteq \operatorname{IntCl} f^{-1}(U)$$

(ii) $\operatorname{IntCl} f^{-1}(U \cap V) \subseteq \operatorname{IntCl} f^{-1}(U) \cap \operatorname{IntCl} f^{-1}(V)$.

Every η -continuous is θ -continuous (Dickman, Porter and Rubin [3, Proposition 3.3. (c)]) and every θ -continuous is obviously weakly continuous.

We denote 1) by |X| the cardinality, of X, 2) by $\psi(X) = \sup\{\psi(X, \mathbf{x}) : \mathbf{x} \in X\}$ the pseudocharacter of X, where $\psi(X, \mathbf{x})$ is the pseudocharacter of X at x, that is the minimal cardinality of pseudobases of x. (The set U_{α} consisting of open neighbourhoods of x, is called a pseudobasis if $\cap U_{\alpha} = \{x\}$), 3) by $\psi^+(X)$ the smallest cardinal number greater than $\psi(X)$. 2. THE SPACE S.

Let R be a Hausdorff space and K, L two uncountable sets such that $|K| = |L| = \aleph > |R|$.

For every $k_i \in K$ (resp. $l_i \in L$) we consider an uncountable set K_i (resp. L_i) and a set Msuch that $|K_i| = |L_i| = |M| \ge \psi^+(R)$. On the set $S = M \bigcup KU \bigcup K_i \cup LU \bigcup L_i$ we define the following topology: Every point belonging to K_i, L_i is isolated. For every $k_i \in K$ (resp. $l_i \in L$) a basis of open neighbourhoods are the sets $O(k_i) = \{k_i\} \cup C_i$ (resp. $O(l_i) = \{l_i\} \cup D_i$), where C_i, D_i consist of all but finite number of elements of K_i, L_i , respectively. For every point $m \in M$ a basis of open neighbourhoods are the sets $O(m) = \{m\} \cup P \cup Q$, where P, Q contain all but finite number of elements of the sets $\{h_i(m) : i \in I\}, \{g_i(m) : i \in I\}$, respectively, where I is an index set, $|I| = \aleph$ and h_i, g_i are one-to-one maps of M onto K_i, L_i , respectively.

One can show that the space S is Tychonoff and non-normal.

Let f be a weakly continuous map of S into R Since |K| > |R|, it follows that for some $r_1 \in R$ there exists $K' \subseteq K$ such that |K'| = |K| and $f(K') = \{r_1\}$. Let $\{k_n : n = 1, 2, ...\}$ be a countable subset of K'. Since for every open neighbourhood U of r_1 the set $f^{-1}(\operatorname{ClU})$ contains an open neighbourhood of k_n , n = 1, 2, ..., it follows that $|K_n \setminus f^{-1}(r_1)| \le \psi(R, r_1)$. Consequently, if h_n is the one-to-one map of M onto K_n then $|h_n^{-1}(K_n \setminus f^{-1}(r_1))| \le \psi(R, r_1)$ and hence $|\bigcup_{n=1}^{\infty} h_n^{-1}(K_n \setminus f^{-1}(r_1))| \le \psi(R, r_1)$. Repeating all the above for the set L we have that for some $r_2 \in R$ there exist $L' \subseteq L, |L'| = |L|, f(L') = \{r_2\}$ and a countable subset $\{l_n : n = 1, 2, ...\} \subseteq L'$ such that if V is an open neighbourhood of r_2 then $|L_n \setminus f^{-1}(r_2)| \le \psi(R, r_2)$ and hence $|\bigcup_{n=1}^{\infty} g_n^{-1}(L_n \setminus f^{-1}(r_2))| \le \psi(R, r_2)$. Therefore if $M' = \bigcup_{n=1}^{\infty} (h_n^{-1}(K_n \setminus f^{-1}(r_1)) \cup g_n^{-1}(L_n \setminus f^{-1}(r_2)))$ then $M \setminus M' \neq \emptyset$. Let $m \in M \setminus M'$ and ClW be a closed neighbourhood of f(m) such that $r_1, r_2 \notin \operatorname{ClW}$. There exists an open neighbourhood O(m) of m such that $f(O(m)) \subseteq \operatorname{ClW}$, while for every $n = 1, 2, ..., h_n(m) \in f^{-1}(r_1), g_n(m) \in f^{-1}(r_2)$ which imply that $f(m) = r_1 = r_2$.

REFERENCES

- JONES, F.B. Hereditarily separable, non-completely regular spaces, Proceedings of the Blacksburg Virginia Topological Conference, <u>Springer-Verlag</u> (375), 149-151.
- ILIADIS, S. and TZANNES, V. Spaces on which every continuous map into a given space is constant, <u>Can. J. Math. 38</u> (1986), 1281-1296.
- DICKMAN, R.F. Jr., PORTER, J.R. and RUBIN, L.R. Completely regular absolutes and projective objects, <u>Pacific J. Math.</u>, <u>94</u> (2) (1981), 277-295.
- ARMENTROUT, S. A Moore space on which every real-valued continuous function is constant, <u>Proc. Amer Math. Soc. 12</u> (1961), 106-109.
- BRANDENBURG, H. and MYSIOR, A. For every Hausdorff space Y there exists a non - trivial Moore space on which all continuous functions into Y are constant, <u>Pacific J.Math. 1</u> (1984), 1-8.
- VAN DOUWEN, E.K. A regular space on which every continuous real-valued function is constant, <u>Nieuw Archief voor Wiskunde 20</u> (1972), 143-145.
- HERRLICH, H. Wann sind alle stetigen Abbildungen in Y Konstant? <u>Math. Zeitschr. 90</u> (1965), 152-154.
- 8. HEWITT, E. On two problems of Urysohn, <u>Annals of Mathematics</u> 47 (1946), 503-509.
- 9. TZANNES, V. A Moore strongly rigid space, <u>Can. Math. Bull. (34) (4)</u> (1991), 547-552.
- YOUNGLOVE, J.N. A locally connected, complete Moore space on which every real -valued continuous function is constant, <u>Proc. Amer. Math. Soc. 20</u> (1969) 527-530