ON THE MATRIX EQUATION $X^n = B$ OVER FINITE FIELDS

MARIA T. ACOSTA-DE-OROZCO and JAVIER GOMEZ-CALDERON

Department of Mathematics Southwest Texas State University San Marcos, Texas 78666-4603 Department of Mathematics
The Pennsylvania State University
New Kensington Campus
New Kensington, Pennsylvania 15068

(Received May 28, 1992 and in revised form April 19, 1993)

ABSTRACT. Let GF(q) denote the finite field of order $q = p^e$ with p odd and prime. Let M denote the ring of $m \times m$ matrices with entries in GF(q). In this paper, we consider the problem of determining the number N = N(n, m, B) of the n-th roots in M of a given matrix $B \in M$.

KEY WORDS AND PHRASES. Finite fields and matrix powers. 1991 AMS SUBJECT CLASSIFICATION CODE. 15A33.

1. INTRODUCTION.

Let GF(q) denote the finite field of order $q = p^e$ with p odd and prime. Let $M = M_{m \times m}$ (q) denote the ring of $m \times m$ matrices with entries in GF(q). In this paper, we consider the problem of determining the number N = N(n, m, B) of the n-th roots in M of a given matrix $B \in M$; i.e., the number of solutions X in M of the equation

$$x^n = B \tag{1.1}$$

Our present work generalizes a recent paper of the authors [1] in which the case N(n,2,B) was considered. If B denotes a scalar matrix, then equation (1.1) is called scalar equation, type of equations that has been already studied by Hodges in [3]. Also, if B denotes the identity matrix and n = 2, then the solutions of (1.1) are called *involutory matrices*. Involutory matrices over either a finite field or a quotient ring of the rational integers have been extensively researched, with a detailed extension to all finite commutative rings given by McDonald in [5].

2. ESTIMATING N(n, m, B).

Let GF(q) denote the finite field of order $q = p^e$ with p odd and prime. Let $M = M_{m \times m}(q)$ denote the ring of $m \times m$ matrices with entries in GF(q) and let GL(q,m) denote its group of units. We now make the following conventions:

- (a) n and m will denote integers so that 1 < m and 1 < n < q,
- (b) N(n, m, B) will denote the number of solutions X in M of the equation

$$X^n = B$$

(c) g(m,d) will denote the cardinality of $GL(q^d,m)$. Thus

$$g(m,d) = \prod_{i=0}^{m-1} (q^{md} - q^{id})$$
$$= q^{dm^2} \prod_{i=1}^{m} (1 - q^{-id})$$

We also define g(0,d) = 1.

Our first lemma is a result given by Hodges in ([3], Th. 2).

LEMMA 1. Suppose E(x) is a monic polynomial over GF(q) with factorization given by $E(x) = F_1^{h_1} F_2^{h_2} \cdots F_s^{h_s}$

where the F_i are distinct monic irreducible polynomials, $h_i \ge 1$ and $\deg F_i = d_i$ for $i = 1, 2, \dots, s$. Then the number of matrices B in M such that E(B) = 0 is given by

$$g(m,1)\sum_{P}q^{-a(p)}\prod_{i=1}^{s}\prod_{j=1}^{h_{i}}g(K_{ij},d_{i})^{-1}$$

where the summation is over all partitions P = P(m) defined by

$$m = \sum_{i=1}^{s} d_{i} \sum_{j=1}^{h_{i}} jk_{ij}, k_{ij} \geq 0$$

and a $(P) = \sum_{i=1}^{s} d_i b_i(P)$ where $b_i(P)$ is defined by

$$b_{i}(P) = \sum_{u=1}^{h_{i}} \left[k_{iu}^{2} (u-1) + 2u \ k_{iu} \sum_{v=u+1}^{h_{i}} k_{iv} \right]$$

LEMMA 2. Let w denote a primitive element of GF(q). Let $r \in GF(q) * = GF(q) - \{0\}$ and write $r = w^t$ for some t, $1 \le t \le q - 1$. Assume n divides q - 1 but 4 is not factor of n. Then

$$\sum_{P} q^{m} (q-1)^{m} \le N(n, m, rl) \le \sum_{P} \frac{q^{m^{2}}}{(q-1)^{m}}$$

where the summation is over all partitions P = P(m) defined by

$$m = \frac{n}{(n,t)} \sum_{i=1}^{(n,t)} k_i, \quad k_i \ge 0$$

PROOF. Let D denote the greatest common divisor of n and t. Then

$$x^{n} - w^{t} = \left(x^{\frac{n}{D}}\right)^{D} - \left(w^{\frac{t}{D}}\right)^{D}$$

$$= \prod_{i=0}^{D-1} \left(x^{\frac{n}{D}} - w^{\frac{(q-1)}{D}}i + \frac{t}{D}\right)$$

$$= \prod_{i=0}^{D-1} h_{i}(x).$$

We also see that $w^{\frac{(q-1)}{D}i+\frac{1}{D}}$ does not belong to the set of powers $GF^S(q)=\{x^s:x\in GF(q)\}$ for all prime factors s of $\frac{n}{D}$. Hence, by ([4], Ch. VIII, Th. 16), each factor $h_i(x)$ is irreducible over GF(q)[x]. Therefore, Lemma 1 with $E(x)=x^n-w^t$ gives

$$N(n, m, r | l) = g(m, 1) \sum_{P} \prod_{i=1}^{D} g\left(k_{i}, \frac{n}{D}\right)^{-1}$$
 (2.1)

where the summation over all partition P = P(m) defined by

$$m = \frac{n}{D} \sum_{i=1}^{D} k_{i}, k_{i} \geq 0.$$

Hence,

$$N(n, m, r \mid l) = \sum_{P} \frac{q^{m^{2}} \prod_{i=1}^{m} (1 - q^{-1})}{q^{\frac{n}{D}} \prod_{i=1}^{n} \prod_{j=1}^{k^{2}} \prod_{i=1}^{n} (1 - q^{-\frac{n}{D}J})}$$

$$\leq \sum_{P} \frac{q^{m^2}}{q^m} \left(\frac{q}{q-1}\right)^m$$
$$= \sum_{P} \frac{q^{m^2}}{(q-1)^m}$$

and

$$N(n, m, rl) = \sum_{P} \frac{q^{m^{2}} \prod_{i=1}^{m} (1 - q^{-1})}{q^{\frac{n}{D}} \prod_{i=1}^{\sum_{i=1}^{n} k_{i}^{2}} \prod_{i=1}^{n} \prod_{j=1}^{k_{i}} (1 - q^{-\frac{n}{D^{j}}})}$$

$$\geq \sum_{P} \frac{q^{m^{2}} (1 - q^{-1})^{m}}{q^{\frac{n}{D}} \prod_{i=1}^{n} k_{i}^{2}}$$

$$\geq \sum_{P} q^{m} (q - 1)^{m}$$

REMARK 1. If $r^m = w^{tm} \notin GF^n(q)$, then n does not divide tm and the number of partitions P is zero. Thus, N(n, m, rl) = 0.

REMARK 2. If $r = w^{q-1} = 1$ and 1 < n < q, including 4 as a possible factor of n, then one can obtain

$$\sum_{P} q^{m} \le N(n, m, l) \le \sum_{P} \frac{q^{m^{2}}}{(q - 1)^{m}}$$

LEMMA 3.
$$\sum_{P} (q-1)^m \le N(n,m,0) \le \sum_{P} \frac{q^{m^2}}{(q-1)^m}$$

where P denotes all partitions P = P(m) defined by

$$m = \sum_{j=1}^{n} j k_{j}, \qquad k_{j} \ge 0$$

PROOF. Applying Lemma 1, with $E(x) = x^n$, we obtain

$$N(n,m,0) = g(m,1) \sum_{P} q^{-b(P)} \prod_{j=1}^{n} g(k_{j},1)^{-1}$$

where the summation is over all partitions P = P(m) defined by

$$m = \sum_{j=1}^{n} j k_{j}, \qquad k_{j} \ge 0$$

and
$$b(P) = \sum_{u=1}^{n} \left[k_u^2(u-1) + 2uk_u \sum_{v=u+1}^{n} k_v \right]$$
. Therefore,

(a)
$$N(n, m, o) = \sum_{P} \frac{q^{m^2} \prod_{i=1}^{m} (1 - q^{-i})}{q^{b(P)} q^{\prod_{i=1}^{m} k_i^2} \prod_{i=1}^{n} \prod_{j=1}^{k_i} (1 - q^{-j})}$$

where

$$b(P) + \sum_{i=1}^{n} k_i^2 = \sum_{u=1}^{n} \left[k_{iu}(u-1) + 2uk_{iu} \sum_{v=u+1}^{n} k_{iv} \right] + \sum_{i=1}^{n} k_i^2 \ge m.$$

We also see that $\frac{1-q^{-i}}{1-q^{-1}} \le \frac{q}{q-1}$. Thus,

$$N(n, m, 0) \le \sum_{P} \frac{q^{m^2}}{q^m} \left(\frac{q}{q-1}\right)^m = \sum_{P} \frac{q^{m^2}}{(q-1)^m}$$

(b)
$$N(n, m, o) = \sum_{P} \frac{q^{m^{2}} \prod_{i=1}^{m} (1 - q^{-i})}{q^{b(P)} q^{\prod_{i=1}^{n} k_{i}^{2}} \prod_{i=1}^{m} \prod_{j=1}^{k_{i}} (1 - q^{-j})}$$

$$\geq \sum_{P} \frac{q^{m^{2}} (1 - q^{-1})^{m}}{q^{b(P)} + \sum_{i=1}^{n} k_{i}^{2}}$$

$$= \sum_{P} \frac{q^{m^{2}} (q - 1)^{m}}{q^{(P)} + m + \sum_{i=1}^{n} k_{i}^{2}}$$

$$\geq \sum_{P} (q - 1)^{m}.$$

Now we will consider a nonscalar matrix B. We start with the following

LEMMA 4. Let B denote a $m \times m$ matrix over GF(q) with a minimal polynomial $f_B(x)$. Let $f_B(x) = f_1^{b_1}(x) f_2^{b_2}(x) \cdots f_r^{b_r}(x)$ with $deg(f_i) = d_i$ denote the prime factorization of $f_B(x)$. Assume that B is similar to a matrix of the form

$$diag\ \underbrace{(C(f_1^{b_1}),\cdots,C(f_1^{b_1})}_{k_1}\cdots,\underbrace{C(f_r^{b_r}),\cdots,C(f_r^{b_r})}_{k_r})$$
 where $C(f_i^{b_i})$ denotes the companion matrix of $f_i^{b_i}$.

Let $f_i(x^n) = \prod_{i=1}^{n} F_{i,j}(x)$ denote the prime factorization of $f_i(x^n)$ for $i = 1, 2, \dots, r$. Let D_i

denote the degree of
$$F_{i,j}(x)$$
 denote the prime factorization of $f_i(x)$ for $i=1,2,\cdots,n$. Let D_i denote the degree of $F_{i,j}(x)$ for $j=1,2,\cdots,a_i$. Then
$$N(n,b,B) \leq \sum_{P} \frac{\prod_{i=1}^{r} g(k_i,d_i)}{\prod_{i=1}^{r} \prod_{j=1}^{q} g(R_{i,j},D_i)}$$
(2.2)

where the summation is over all partitions $P = P(a_i, D_i, d_i, k_i)$ defined by

$$D_{i} \sum_{j=1}^{a_{i}} R_{ij} = d_{i} k_{i}, \qquad R_{ij} \geq 0$$

for $i=1,2,\cdots,r$.

PROOF. If $T^n = B$ then $f_B(T^n) = 0$. Thus the minimal polynomial of T divides $f_B(x^n)$ and T is similar to a matrix of the form

$$diag(E_1, E_2, \cdots, E_r) \tag{2.3}$$

where

$$E_i = diag\underbrace{(C(F_{i1}^b), \cdot \cdot \cdot , C(F_{i1}^b)}_{R_{i1}}, \cdot \cdot \cdot \cdot , \underbrace{C(F_{ia_i}^{b_i}), \cdot \cdot \cdot , C(F_{ia_i}^{b_i})}_{R_{ia_i}})$$

with $C(F_{ij}^{b_i})$ denoting the companion matrix of $F_{ij}^{b_i}$. So, we have a partition $P = P(a_i, D_i, d_i, k_i)$ defined by

$$D_{i} \sum_{j=1}^{a_{i}} R_{ij} = d_{i}k_{i}$$
 (2.4)

for $i = 1, 2, \dots, r$. Therefore,

$$N(n,m,B) \leq \sum_{P} \; \frac{\mid com(B) \mid}{\mid com(T) \mid}$$

where $com(H) = \{X \in GL(q,m): XH = HX\}$ and the summation is over all partitions P defined

by (2.4).

Now using the formula for |COM(H)| given by L.E. Dickson in ([2], p. 235) we obtain

$$N(n, m, B) \leq \sum_{P} \frac{\prod_{i=1}^{r} g(k_{i}, d_{i})}{\prod_{i=1}^{r} \prod_{j=1}^{d} g(R_{ij}, D_{i})}$$

This completes the proof of the lemma.

REMARK. If T is similar to a matrix of the form given in (2.3), then T^n may have elementary divisors of the form $f_i^C(X)$ with $C_i < b_i$. This possibility is the main problem to get an equality at (2.2).

LEMMA 5. Let B denote a $m \times m$ matrix over GF(q) with minimal polynomial $f_B(x)$. Let $f_B(x) = f_1^{b_1}(x)f_2^{b_2}(x) \cdot \cdot \cdot f_r^{b_r}(x)$ with $d_i = deg(f_i)$ denote the prime factorization of $f_B(x)$. Assume $m = \sum_{i=1}^{r} b_i d_i$. Then

$$N(n, m, B) \leq n^r \leq n^m$$

Further, $N(n, m, B) = n^m$ if and only if $f_i(x) = x - a_i$ with $a_i \in GF^n(q)$ for $i = 1, 2, \dots, r = m$.

PROOF. With notation as in Lemma 4, $m = \sum_{i=1}^{r} b_i d_i$ implies $k_i = k_2 = \cdots = k_r = 1$. Therefore, if $T^n = B$ then $D_i = d_i$ for all $i = 1, 2, \cdots, r$ and

$$N(n, m, B) \leq \sum_{P} 1$$

where the summation is over all partitions P defined by

$$\sum_{j=1}^{a_i} R_{ij} = 1, \qquad R_{ij} \ge 0$$

for $i = 1, 2, \dots, r$. Thus,

$$N(n,m,B) \leq \prod_{i=1}^{r} a_i \geq n^r$$

Now if $N(n,m,B) = n^m$, then r = m. So, each polynomial $f_i^{b_i}(x)$ must be linear so that $f_i(x^n)$ splits as a product of n distinct linear factors. Hence, $f_i(x) = x - a_i$ with $a_i \in GF^n(q)$ for $i = 1, 2, \dots, r = m$. Conversely, if $f_i(x) = x - a_i$ with $a_i \in GF^n(q)$, then

$$Q^{-1} \ diag \ (e_1, e_2, \cdots, e_m) \ Q = B$$

for some matrix Q in GL(q,m) and for all e_i in GF(q) such that $e_i^n = a_i$ for $i = 1, 2, \dots, r$. Therefore,

$$N(n, m, B) = n^m$$
.

COROLLARY 6. If $B = diag(b_1, b_2, \dots, b_m)$ with $b_i \neq b_j$ when $i \neq j$, then

$$N(\overrightarrow{n}, \overrightarrow{m}, B) = \begin{cases} n^m \text{ if } b_i \in GF^n(q) \text{ for } i = 1, 2, \dots, m \\ 0, \text{ otherwise} \end{cases}$$

LEMMA 7. Let B denote a $m \times m$ matrix over GF(q). Assume that the minimal polynomial of B is irreducible of degree d < m. Then, either N(n, m, B) = 0 or $N(n, m, B) \ge (q^d - 1)^{m/d}$.

PROOF. Let $f_B(x)$ denote the minimal polynomial of a $m \times m$ matrix B over GF(q). Assume $f_B(x)$ is irreducible of degree d < m. Thus, m = rd for some integer $r \ge 2$. Let $f_B(x^n) = F_1(x)F_2(x) \cdot \cdot \cdot F_a(x)$ denote the prime factorization of $f_B(x^n)$ and let D denote the degree of each of the factors $F_i(x)$ for $i = 1, 2, \dots, a$. Assume N(n, m, B) > 0. Then $T^n = B$ for some matrix T that is similar to a matrix of the form

$$diag \underbrace{(C(F_1), \cdots, C(F_1)}_{R_1} \cdots \underbrace{C(F_a), \cdots, C(F_a)}_{R_a})$$

where $C(F_i)$ denote the companion matrix of $F_i(x)$ for $i=1,2,\cdots,a$.

Therefore.

$$\begin{split} N(n,m,B) &\geq \frac{|COM(B)|}{|COM(T)|} \\ &\geq \frac{q^{dr^2} \prod\limits_{j=1}^r (1-q^{-d_j})}{q^{D \sum\limits_{i=1}^d R_i^2} \prod\limits_{i=1}^a \prod\limits_{j=1}^{R_i} (1-q^{-D_j})} \\ &\geq \frac{q^{dr^2} (1-q^{-d})^r}{D \sum\limits_{i=1}^a R_i^2} \\ &\geq \begin{cases} \frac{q^{m(r-1)} (q^d-1)^r}{q^{m(\frac{m}{D}-1)}} & \text{if } m > d \\ \frac{q^{m(r-1)} (q^d-1)^r}{q^m} & \text{if } m = D \end{cases} \\ &\geq (q^d-1)^{m/d}. \end{split}$$

We are ready for our final result.

THEOREM 8. Let B denote a $m \times m$ matrix over GF(q) and let $f_B(x)$ denote its minimal polynomial. Let $f_B(x) = f_1^{b_1}(x) f_2^{b_2}(x) \cdots f_r^{b_r}(x)$ with $deg(f_i) = d_i$ denote the prime factorization

of
$$f_B(x)$$
. Assume B is similar to a matrix of the form
$$diag \underbrace{(C(f_1^{b_1}), \cdots, C(f_1^{b_1})}_{k_1} \cdots, \underbrace{C(f_r^{b_r}), \cdots, C(f_r^{b_r})}_{k_r})$$

where $C(f_i^{b_i})$ denotes the companion matrix of $f_i^{b_i}$. Let $f_i(x^n) = \prod_{j=1}^{a_i} F_{ij}(x)$ with $deg(F_{ij}) = D_i$ denote the prime factorization of $f_i(x^n)$ for

 $i = 1, 2, \cdots, r$. Then

$$N(n,m,B) \left\{ \begin{array}{ll} \leq n^r & \text{if } k_{\centerdot} = 1 \text{ for } i = 1,2,\cdots,r \\ \\ = n^m & \text{if } d_i = b_{\centerdot} = k_i = 1 \text{ and } a_{\centerdot} = n \text{ for } i = 1,2,\cdots,r \\ \\ \text{either, 0 or } \geq \prod_{i=1}^r \left(q^{d_i} - 1\right)^{k_i} \text{ if } b_{\centerdot} = 1, k_{\centerdot} \geq 2 \text{ and } D_{\centerdot} \mid k_{\centerdot} d_{\centerdot} \end{array} \right.$$

for $i=1,2,\cdots,r$.

PROOF. Apply Lemmas 5 and 7 and Corollary 6.

REFERENCES

- ACOSTA-DE-OROZCO, M.T. & GOMEZ-CALDERON, J., Matrix powers over finite fields, Internat. J. Math. and Math. Sci. 15 (4) (1992), 767-772.
- 2. DICKSON, L.E., Linear Algebra, Leipzig, 1901.
- HODGES, J.H., Scalar polynomial equations for matrices over a finite field, Duke Math. J. 3. **25** (1958), 291-296.
- LANG, S., Algebra, Addison-Wesley, Reading, MA, 1971. 4.
- 5. McDONALD, B.R., Involutory Matrices over finite local rings, Canadian J. of Math. 24 (1972), 369-378.