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ABSTRACT. Let GF(q) denote the finite field of order q pC with p odd and prime. Let M
denote the ring of rn m matrices with entries in GF(q). In this paper, we consider the problem

of determining the number N N(n,m,B) of the n-th roots in M of a given matrix B E M.
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1. INTRODUCTION.
Let GF(q) denote the finite field of order q pe with p odd and prime. Let M Mm x rn

(q) denote the ring of mm matrices with entries in GF(q). In this paper, we consider the

problem of determining the number N N(n,m,B) of the n-th roots in M of a given matrix

B E M; i.e., the number of solutions X in M of the equation

x"=B (1.1)

Our present work generalizes a recent paper of the authors [1] in which the case N(n, 2, B)
was considered. If B denotes a scalar matrix, then equation (1.1) is called scalar equation, type

of equations that has been already studied by Hodges in [3]. Also, if B denotes the identity

matrix and n 2, then the solutions of (1.1) are called involutory matrices. Involutory matrices

over either a finite field or a quotient ring of the rational integers have been extensively

researched, with a detailed extension to all finite commutative rings giv,en by McDonald in [5].
2. ESTIMATING N(n,m,B).

Let GF(q) denote the finite field of order q pC with p odd and prime. Let M Mmx re(q)
denote the ring of mxm matrices with entries in GF(q) and let GL(q,m) denote its group of

units. We now make the following conventions:

(a) n and rn will denote integers so that 1 < rn and 1 < n < q,

(b) N(n,m,B) will denote the number of solutions X in M of the equation

(c) g(m,d) will denote the cardinality of GL(qd, rn). Thus

m-1
g(m,d)- YI (q,d_q,d)

-0

m
cl)-qdm lI (1-q

i=1
We also define g(O,d) 1.

Our first lemma is a result given by Hodges in ([3], Th. 2).
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LEMMA 1. Suppose E(x) is a monic polynomial over GF(q) with factorization given by

where the F are distinct monic irreducible polynomials, h >_ 1 and degF d for 1,2, .,s.

Then the number of matrices B in M such that E(B) 0 is given by

s h,
g(m, 1)yq-"(’) II I-I g(Kij, di)-1

P i=lj=l

where the summation is over all partitions P P(m) defined by

s
= , ,,, ,,_>o

i=1 j=l

and a (P)= d,b,(P)where b,(P)is afia by

b,(P) ., k, (u-1) + 2u k,u Y
u=l v=u+l

LEMMA 2. Let w denote a primitive element of aF(q). Let

write r w for some t, 1 _< _< q- 1. Assume n divides q- but 4 is not factor of n. Then

yq"(q- 1) _< N(n, m,r/) _<
(q_P P

where the summation is over all partitions P P(m) defined by
(,t)

" Z(n,t) i= 1

PROOF. Let D denote the greatest common divisor of n and t. Then

X W X W

X-_W D

i=0

D-1
II ,().
i=0

(q-a) 1

We also see that w D i+ does not belong to the set of powers GFS(q) {x:x E GF(q)} for all

prime factors s of . Hence, by ([4], Ch. VIII, Th. 16), each factor hi(x) is irreducible over

GF(q)[x]. Therefore, Lemma 1 with E(x)= x"-w gives

N(n,m,r l)= g(m, 1) y II g k,,
Pi=l

(2.1)

where the summation over all partition P P(m) defined by

D
m= .Z 0.

z=l
Hence,

qm2 H (l--q-’)
i=1N(n,m,r l)= y

P.,n
q’=l II II(l-q-V’/

i=lj=l
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q

P

qm=- (q 1)"P

N(n, m, rl)
P

m
-1qm2 FI (1-q

i=1

q 1-I 17[ (1
i=1j=1

qm2(1 q-
p -q
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> q’(q- 1)
P

REMARK 1. If r" wt" GF"(q), then n does not divide tm and the number of partitions

P is zero. Thus, N(n,m, rl)= O.

REMARK 2. If r wq- 1 and 1 < n < q, including 4 as a possible factor of n, then one

can ’obtain
q" < N(n,m,l)<_ y (q_ 1P P

LEMMA 3.
qm[(q- 1)" _< N(n,m,O) <_ -:(q_

P P

where P denotes all partitions P P(m) defined by

n
m= y j k, k.>O

3=1
PROOF. Applying Lemma 1, with E(x) x", we obtain

N(n,m,O) g(m, 1)- q-b(P) II g(k,,1) -1
P j=l

where the summation is over all partitions P P(m) defined by

m= y j k, k>_O
j=l

and b(P) k(u- 1)+ 2uk k, Therefore,
u=l v=u+l

(a)

where

qm2 I (1--q-i)
N(n, m, o)

p k,n k,
qb(P)q,=l 1-I l’I (1 q-’)

i=lj=l

n n [ n
b(P) + k k,u(u-1) + 2ukiu

i=1 u=l v=u+l
k,,, + _, k>m.

i=1

We also see that 1-q
1-q

-i- < q-q1" Thus,
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N(n,m,0)< p -- (q-1

(b)
qm2 fi (1-q -i)

i=1N(n,m,o) k,p k, n
qb<P) q YI II (1 q-’)

i=lj=l

>-- Z qrn(1 q- ’)’
P ,(P)+

q

qm:(q- 1)
(P) +, +,P q

Now we will consider a nonscalar matrix B. We start with the following

LEMMA 4. Let B denote a m x m matrix over GF(q) with a minimal polynomial fs(x).
Let ft,(x)= fl(x)f(x)...fbr"(x with deg(f,)=d, denote the prime factorization of fs(x).
Assume that B is similar to a matrix of the form

whre C(y) deote the companion matrix of fb,i"
Let ]’,(x") 1-I F,,(z) denote the prime factorization of f,(x") for i= 1,2,---,r. Let D,

1=1
denote the degree of F,3(z for j 1,2,. .,a,. Then

(I g(k,,d,)
,=1 (2.2)N(n,b,B) <_ a,

P (I I-Ig(R,3, D,)
=1 ./=1

where the summation is over all partitions P P(a,,Di, d,,k,) defined by

Di RO=d,k,, R,>0
1=1

for 1,2, .,r.

PROOF. If T" B then I(T") 0. Thus the minimal polynomial of T divides Is(z") and

T is similar to a matrix of the form

diag(E1, E, ,E,.) (2.3)

where
Ei diag(C(F|), C(FI), ..., c(ria,), C(F,)

’h’ Riai
So, we a partition P(ai, Di, d,,k,)bwith C(F denoting the companion matrix of Fi.J. have P

defined by a,
D, n,, =d,k, (2.4)
3=1

for 1, 2, ., r. Therefore,

N(n,m,B) <_ com(B)
p corn(T)

where com(H))= {X e GL(q,m):XH HX} and the summation is over all partitions P defined



ON THE MATRIX EQUATION Xn=B OVER FINITE FIELDS 543

by (2.4).
Now using the formula for ICOM(H) given by L.E. Dickson in ([2], p. 235) we obtain

(,,,1
N(n,m,B) <_ a,

P (I I[g(R,,D,)
,=1 =1

This completes the proof of the lemma.

REMARK. If T is similar to a matrix of the form given in (2.3), then T" may have

elementary divisors of the form f("(X) with C, < b,. This possibility is the main problem to get
an equality at (2.2).

LEMMA 5. Let B denote a m m matrix over GF(q) with minimal polynomial fs(x). Let

fB(x) f’(x)f2(x) fbrr(x with d, deg(f,) denote the prime factorization of fB(x). Assume
m= b,d,. Then

N(n,m,B) < n <

Further, N(n,m,B)= n if and only if f,(x)= x-a, with a, E GF"(q) for i= 1,2, .,r m.

PROOF. With notation as in Lemma 4, m b,d, implies k, k2 k 1.
t----1

Therefore, if T" B then D, d, for all 1,2, ., v and

N(n,m,B) <
P

where the summation is over all partitions P defined by
a

R,= 1, R,>0
j=l

for 1,2, -, r. Thus, r
N(n,m,B) < 1-I a, > n

Now if N(n,m,B)=n’, then r=m. So, each polynomial f’(x)must be linear so that

f,(z") splits as a product of n distinct linear factors. Hence, f,(z)= z- a, with a, GF"(q) for

i= 1,2, .,v m. Conversely, if f,(z)= x- a, with a, GF"(q), then

Q-’ diag (e,,e, ,e,,) Q B

for some matrix Q in GL(q,m) and for all e, in GF(q) such that e7 a, for i= 1,2,---,r.

Therefore,

N(n,m,B)=n".

COROLLARY 6. If B diag(bl,b,. ,b,,,) with b, b when j, then

j’n" if b,
_
GF"(q) for i= 1,2, .,m

N(t-, rh, B)
[0, otherwise

LEMMA 7. Let B denote a mm matrix over GF(q). Assume that the minimal

polynomial of B is irreducible of degree d < m. Then, either N(n,m,B) 0 or

Y(n,m,B) > (qd_ 1),#.
PROOF. Let fs(x) denote the minimal polynomial of a mm matrix B over GF(q).

Assume fs(x) is irreducible of degree d < m. Thus, m rd for some integer r > 2. Let

fB(X’) F(x)F(x)... f,,(x) denote the prime factorization of fs(x") and let D denote the

degree of each of the factors F(x) for 1,2,. .,a. Assume N(n,m,B) > 0. Then T" B for

some matrix T that is similar to a matrix of the form

diag (C(F1),..-,C(fl)..., C(Fa), ",C(Fa)
R
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where C(F,) denote the companion matrix of F,(x)for i= 1,2, .,a.

Therefore,

N(n re, B) > COM(B)
ICOM(T)

qdr2 ’I (1-q -d3)
j=l

D n, a R,
-D./)q ’:’ 1-[ I- (1-q

i=1j=1

qdr2(1 q d)r

q ,=1

q’( ’)(q )r
q,,(3 1)

q’( )(qd )"

ifm>d

ifm=D

> (qd_ 1)’/d.
We are ready for our final result.

THEOREM 8. Let B denote a m m matrix over GF(q) and let fz(x) denote its minimal

polynomial. Let fB(x)= fl(x) fb22(x).., fbrr(X with deg(f,)= d, denote the prime factorization

of fs(x). Assume B is similar to a matrix of the form

diag (C(fl), .,C(fl) ., c(fbrr), ",c(fbrr))
kl k

where C(fi) denotes the companion matrix of fb,i"
Let f,(x")= I-[ F,(x)with deg(F,)= D, denote the prime factorization of f,(x") for

7=1
i=l,2,-..,r. Then

if k, 1 for 1,2, .,r

N(n, m, B) n’* if di b, k 1 and a, n for 1,2, ., r

r
either, 0 or >_ 1"I (qd,_ 1)k if b, 1,k, >_ 2 and D,

z=l
for 1,2,- .,r.

PROOF. Apply Lemmas 5 and 7 and Corollary 6.
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