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ABSTRACT. It is well known that a wide class of obstacle and unilateral problems arising in

pure and applied sciences can be studied in a general and unifield framework of variational

inequalities. In this paper, we derive the error estimates for the finite element approximate
solution for a class of highly nonlinear variational inequalities encountered in the field of

elasticity and glaciology in terms of wl’l(t2) and Ll0(t2)-norms. As a special case, we obtain the

well-known error estimates for the corresponding linear obstacle problem and nonlinear problems.
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1. INTRODUCTION.
Variational inequality theory is an interesting branch of applicable mathematics, which not

only provides us with a uniform framework for studying a large number of problems occurring in

different branches of pure and applied sciences, but also gives us powerful and new numerical

methods of solving them. In this paper, we conider a broad class of highly nonlinear elliptic

boundary value problems having some extra constrained conditions. A much used approach with

any elliptic problem is to reformulate it in a weak or variational form aad then to approximate

these. In the presence of a constraint, this approach leads to a variational inequality, which is

the weak formulation.

In recent years, the finite element techniques are being applied tb compute the approximate

solutions of various classes of variational inequalities. Relative to the linear variational

inequalities, little is known about the accuracy and convergance properties of finite element

approximation of nonlinear variational inequalities associated with nonlinear elliptic boundary
value problems. The nonlinear problems are much more complicated, since each problem has to

be treated individually. This is one of the reasons that there is no unified and general theory for

the nonlinear problems. An error analysis of finite element method for the boundary value

problem having nonlinear operator 7 (I x7 ulP-27) was derived by Glowinski and Marroco [1],
which was an improvement of the results of Oden [2]. For piecewise linear finite element

approximations, they obtained error estimates in the wl’l-norm of order hI[p- 1, which were

extended by Noor [3] for strongly nonlinear problems. Babuska [4] also obtained the same type

of estimate for the finite element approximation of second order quasilinear elliptic problems.
Error estimates for various types of variational inequalities involving second order linear and

nonlinear elliptic operators have been derived by many workers including Falk [5], Mosco and
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Strang [6], Janovsky and White,nan [7] and Noor ([8], [9]), under sufficient regular solutions.

Oden and Reddy [10] obtained some general results for a class of highly nonlinear variational

inequalities involving certain psuedo-monotone operators under the assumption that all the

solutions (exact and approximate ones) of these variational inequalities are in the interior of a

closed convex set in wI’p(). This assumption converts the variational inequalities into

variational equations, which makes the error analysis a standard one as in the uncontrained case.

The most important and difficult part of the problem is when the solutions are not in the interior

of a closed convex set, a case not covered by their analysis. It is also known that in the presence

of the constraints, the approximate solution is no longer a projection of the exact solution as in

the unconstrained case. This represents a major difficulty in obtaining the error estimates for the

finite elemen approximation of nonlinear variational inequalities.

In the present study, our analysis is based on the existence theory of nonlinear operator

equations put forward by Glowinski and Marroco [1]. We extend their results for a class of

nonlinear obstacle problems arising in elasticity and glaciology in Section 2. Section 3 is devoted
to an analysis of error estimates in finite element approximation for our model problem. Here we

derive error estimates in the wl’p(f) and Ll0-norms using the ideas and technique of Mosco and

Strang [6]. Our results represent a substantial generalization and improvement of the error

analysis of finite element approximation of strongly nonlinear monotone operators and variational

inequalities contributed by Glowinski and Marroco [1], Oden and Reddy [10] and Noor [9].
2. VARIATIONAL INEQUALITY FORMULATION.

The mathematical model discussed in this paper arises in the field of elasticity and

Oceanography, see [11]. We consider the problem of finding the velocity of the glacier, which is

required to satisfy the nonlinear obstacle problem of the type <

(1 ulP-2u) g72u>f in f

u> inft

(- xT(I TulP-2Tu) 72u-f)(u-)=O in f
(2.1)

u 0 on/)f

where is the cross-section of the glacier and is the given function, known as the obstacle. The

presence of/’ and 72u may be interpreted as body heating terms, these arises from resistivity

and are local Joule heating effects. Also, in elasticity, the problem of torsional stiffness of a

prismatic bar with a simply connected convex cross-section f and subject ’to steady creep, which

is characterized by a power law, can be described by (2.1) and p is the exponent of the creep law.

The case/ and 72u 0 is related to the problem of capillarity and minimal surfaces, see Finn

[12].
The problem (2.1) is a generalization of the nonlinear problem of finding u such that

-7([7ulP-2u)=! inf / (2.2)
u 0 on cgf f’

for which the error estimates have been derived by using the finite element approximation by

Glowinski and Marroco [1]. The presence of the obstacle needs a different approach for deriving
the error estimates and this is the main motivation of this paper.

Let, ft c Rn be a bounded open domain with smooth boundary 0f. We consider wlo’l(f) a

reflexive Banach space with norm

Ilt, =(ftf VvlP)lip
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and the dual space w-l,q(), _+ 1. The pairing between wlo’P(gt) and W-l,q(fl)is denoted

by < .,. >. For more details and notation, see Kikuchi and Oden [13].
We here study the problem (2.1) in the framework of variational inequalities. To do so, we

consider that set K defined by

K {v W’P(n): ,, , on n}, (2.3)

which is a closed convex set in W’P(9).
The energy (potential) functional l[v] sociated with the obstacle problem (2.1) is given by

J() +b(v,v)-2 < f, >, (2.4)
where

J(v):- / v[ p dz, b(u,v)= f Tu.Tv dz, bilineor form

and

Following the techniques of Nr [8] d Kikuchi d Oden [13], one c show that the

minimum of l[v], defined by (2.4), can characterized by a class of variational inequMities of

the type

<Tu,v-u> +b(u,v-u) <f,v-u>, forMlveK, (2.5)

which is known the weak formulation of the obstle problem (2.1) with

<Zu, v> <J’(u),v> [ Vul p-2 Vu Vvdz. (2.6)

We here consider the variationM inequality (2.5) to obtain the error estimate for u-ut in

both wI’P(fl) d Lp-norms. In order to derive the main results, we nd the following resnlts

which are due to Glowinski and Marroco [1].
LEMMA 2.1 For all u,v wlo, P(fl), we have

<Tu-Tv, u-v> > allu-vll p, p>_2

<Tu-Tv, u-v> < allu-vll(llull + Ilvll)p-2

<Tu-Tv, u-v> > ,ll,,-l12(llull + Ilvll)P -2,

IlZu-Zll _> all-ll

(2.7t

p_>2, (2.8,

< p_<2, (2.9)

< p _< 2. (2.10)

We also remark that if the operator T satisfies the relations (2.7)-(2.10) and the bilinear

form b(u,v) is positive continuous, then, using the techniques of Noor [14] and Kikuchi and Oden

[13], we can prove the existence of a unique solution of (2.5). Furthermore, concerning the

regularity of the solution u e K satisfying (2.5), we assume the following hypothesis:

(A) {For pe Wlo’P(fl)Nw2’P(fl),u K satisfying (2.5) also lies in W2’P(fl)}.
3. FINITE ELEMENT APPROXIMATIONS.

In this section, we derive the error estimates for the finite element approximation of

variational inequalities of type (2.5). To do so, we consider a finite dimensional subspace

Sh C wol’P(fi) of continuous piecewise linear functions on the triangulation of the polygonal
domain t2 vanishing on its boundary gf. Let *h be the interpolant of ,p such that Ch agrees at all

the vertices of the triangulation. For our purpose, it is enough to choose the finite dimensional

convex subset Kh Shf3{vh > Ph only at the vertices of the triangulation}, as in Berger and Falk

[15]. For other choices of convex subsets, see ([5], [7], [8], [13]).
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The variational inequality (2.6) can in practice seldom be solved, and so, approximation uh
to u from a finite dimensional convex subset Kh are sought. Thus the finite element
approximation uh of u is:

Find uh 6- Kh such that

< Tuh, ,,h-Uh > +b(uh, ,,h-Uh) >_ < f, vh-uh >, for all vh 6- Kh. (3.1)

We also note that in certain cases, the equality holds instead of inequality in (2.6). This

happens when v, together 2u-v, also lies in K. In this case, we get
<Tu, v-u> +b(u, v-u)= < f, v-u>. (3.2)

Furthermore, if W is the interpolant of u, which agrees at every vertex of fl, then " lies in Kh. It
is well known from approximation theory, see Ciarlet [16] that

u-W _< ch II u 2" (3.3)

Finally, let M and Mh be the cones composed of non-negative functions on wlo’P(f) and its

subspace Sh" Thus, it is clear that

U u- is in M

Uh Uh-h is in Mh.
From these relations, it follows that

u-- uh U -Uh + l,- bh. (3.4)

We also need the following result of Mosco and Strang [fi], which is known as the one-sided

approximation result.

LEMMA 3.1. Suppose that U > 0 in the polygon (plane) f and U lies in

Then, there exists a Vh in Sh such that

O<Vh <_U inf
and

U Vh < ch U 2 3.5

We now state and prove the main result of this paper.

THEOREM 3.1. Let the nonlinear operator T: Wo1’ P(f)-W- l’P(fl) satisfy the rela.tiots

(2.7)-(2.10) and b(u,v) be a positive continuous bilinear form. If Vh 6. Mh and 2U-va 6. M, th,’u

O(h:’-’), p 2, ,3.6)
= uh w,P() 0(h3), < p 2, (3.7)

where ue K d nh e K e the solutions of (2.6) d (3.1) rctively d the by,thesis (A)
hdds.

PROOF. Since th v=+vh d 2u-v=+(2U-V) e in K, we have from (2.5) d
(3.2) that

< TU, Vh-U > +b(u, Vh-U)= < I, Vh-U >. (3.8)

tting nh =Wh+Vh d uh =h+Uh in (3.1), we obtn
< Tn,Vn-Un > +b(,n, Vn-Un) < f, Vn-Un >, (3.9)

d ting v +Uh in (2.5), we have

< Tu, Un-U > +b{u,Un-U) < f,Un-U >. (3.10)

Subttig (3.S) from (3.0), w gt
<Tu, Uh-Vh > +b(u, Uh-Vh) < f, Uh-Vh > (3.11)

From (3.9) d (3.11), it follows that

< Tu Tuh, Uh Vh > + b(u Uh, Uh Vh) >_ O,
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which can be written as

<Tu-TUh, U-Uh ) +b(U-Uh,U-Uh) <_ <Tu-Tuh,U-Vh ) +b(U-Uh,U-Vh ) (3.12)

Since b(u,v) is a positive bilinear, so far p >_ 2 and using (2.7), we have

a][u-uh p_< <ru-Tuh, u uh

< <Tu-Tuh,u-uh> +b(u-uh, u-uh>

<Tu-Tuh,,-q,h > +b(u-uh, tk-h > + <Tu-Tuh,U-Uh > +b{U-Uh,U-Uh).

< < Tu Tuh, tkh > 4- b(u Uh, tkh)

+ < Tu Tuh,U Vh ) + b(u Uh, U Vh), by using (3.12).

_< II--.hll {(ll"ll + IIll)P+v}{ll-hll + IIU-Vhll}, (3.13)

by using (2.8) and the continuity of

Without loss of generality, we assume that

uh < u [I. (3.14)

Combining (3.3), (3.8), (3.13) and (3.14), we have, for

o(hl/P 1),II u "h Wo, P(n)
which is the required result (3.6).

Similarly, we can show that,
0(h-=--), for < p < 2.- "h Wo,()

REMARK 3.1.

(1) For p 2, the results obtained in this pper are exactly hose of Falk [5] and Mosco
and

Strang [6].
(2) In the absence of the constraints, our results reduce to the well known results

Glowinski and Marroco [1] and Babuska [4].
(3) For p 4, we have II ’-’h z, 0(hi/3), which is proved by Oden and Reddy [0]

Wo 4(fl)
in finite elasticity under the assumption that the solution lies in the interior of th
convex set K. Thus our results represents an improvement of the previous results
For < p < 2, there is no counterpart in the linear theory and our results appear to bc
new ones.

Using the one-sided approximation result of Mosco and Strang [6] and Aubin-Nitsche trick

[16], and the techniques of Noor [17] and Mosco [18], we can derive the following error estimate

for the finite element approximation of variational inequality (2.6) in the Lp-norm.
THEOREM 3.2. If u fi K and uh . Kh are solutions of (2.6) and (3.1) respectively and

hypothesis (A) holds, then f
0(h-), p > 2

(,,- "h) + Lp(fl) O(h_._ ), < p < 2

and

0(h-),
(- "h) Lp(n) O(h"--’--’), < p < 2

where (U-Uh)+ =Sup (U- Uh, O and (U- Uh)- =in/(u-uh, O

REMARK 3.2. For piecewise linear elements and

result obtained by Oden and Reddy [10] under the asumption that all the solutions lie in the
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which can be written as

<Tu-TUh, U-Uh> +b(U-Uh, U-Uh) <_ <Tu-Tuh,U-Vh> +b(U-Uh,U-Vh> (3.12)

Since (u,v) is a positive bilinear, so far n _> 2 and using (2.7), we have
,,- ’9,

p < < Tu- TUb, u- uh >

<_ <Tu-Tuh,u-uh> +b(u-uh,u-uh>

<Tu-TUh,-g,h > +b(U-Uh,-Oh > + <Tu-Tuh,U-Uh > +b(U-Uh, U-Uh).

<_ <Tu-TUh,-h > +b(U-Uh,-tbh)

+ <Tu-Tuh,U-Vh > +b(U-Uh,U-Vh), by using (3.12).

_< I1=-=11 {(11=11 + I1,,11)P+}{11-11 + IIV-Vll}, (3.13)

by using (2.8) and the continuity of (u,v).

Without loss of generality, we assume that

= _< "II. (3.14)

Combining (3.3), (3.8), (3.13) and (3.14), we have, for p _> 2,

o(hl/P 1),
which is the required result (3.6).

Similarly, we can show that,
0(hZ-t), for < p<2.

REMARK 3.1.

(1) For v 2, the results obtained in this paper are exactly those of Falk [5] and Mosco
and

Strang [6].
(2) In the absence of the constraints, our results reduce to the well known result., of

Glowinski and Marroco [i] and Babuska [4].
(3) For p 4, we have u uh , 0(hi

Wo
in finite elasticity under the assumption that the solution lies in the interior ol ,he
convex set K. Thus our results represents an improvement of the previous res Its.
For < p < 2, there is no counterpart in the linear theory and our results appear t,. be
new ones.

Using the one-sided approximation result of Mosco and Strang [6] and Aubin-Nitsche trick

[16], and the techniques of Noor [17] and Mosco [18], we can derive the fo,llowing error estimate

for the finite element approximation of variational inequality (2.6) in the Lp-norm.
THEOREM 3.2. If u e K and uh 6. Kh are solutions of (2.6) and (3.1) respectively and

hypothesis (A) holds, then f p

O(hn- 1), p >_ 2

and

O(hp- 1), p 2

(- =h) Lp(fl) O(hp_3), <

where (u- uh) + Sup (u- Uh,0 and (u- uh)- Inf (u Uh, O

REMARK 3.2. For piecewise linear dements and

result obtained by Oden and Reddy [10] under the assumption that all the solutions lie in the
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interior of the closed convex set K in wl’P-space. In this way, our results represent an

improvement of their result. For < p _< 2, our results appear to be new ones and there is no

counterpart in the linear theory.

4. CONCLUSION.
In this paper, we have obtained the error estimates of the finite element approximations of

the solutions of a class of highly nonlinear variational inequalities in the wl’p and tv-norms,
which appear to be new ones. These estimates are distinctly nonlinear in character. In
particular, for p 2, corresponding to the linear elliptic theory, we obtain an error of order h,

which agrees with the recent results.
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