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ABSTRACT. In a previous paper (see [5]), we applied a fixed -sequence and neutrix limit due to Van

der Corput to give meaning to distributions 5k and (’)k for k E (0,1) and k 2,3,.... In this paper,

ve choose a fixed analytic branch such that z’(- < arg z _< ) is an analytic single-valued function amd

define i(z) on a suitable function space In. We show that ’(z) E I’. Similar results on ((’)(z)) are

obtained. Finally, we use the Hilbert integral o(z) f+-o -tdt where (t) D(R), to redefine (z)
as a boundary value of ’(z i). The definition of f’(z) is independent of the choice of -sequence.
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1. INTRODUCTION

The difficulties inherent in defining products, powers or nonlinear functions of generalized functions

have not prevented their appearamce in the literature (see e.g. [1], [2] and [3]). In [4], a definition for a

product of distributions is given using 5-sequences. However, they show that 2 does not exist. Similarly,

such objects as v/ and sin 5 appear to be meaningless. In this paper, we attempt to show a way out in

some sense.

In a previous paper [5], we applied a fixed -sequence and neutrix-limit due to Van der Corput to

give a meaning to distributions 5 and (’) for k (0,1) and k 2, 3,-... In fact, our definition is

a regularization of distributions which is similar to the method used to define some pseudofunctions by

Hadamard’s finite part. A method is introduced here with the help of the Cauchy’s integral formula and

the Hilbert integral transform. For M1 c, ( R+, we define a(z) on a suitable function space I=, and redefine

5’(z) as the boundary vMue of n(z- i) as 0+. The definition of ’(x) is independent of the choice

of the 5-sequence. No neutrix limit or Hadamard’s finite part are needed.
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2. THE GENERALIZED FUNCTIONS 6(o E R+)
Let a be a fixed positive number greater than 1. Let la {0(z) 0(z) is analytic on Imzl < o}, We

supply la with the following convergence concept.

Let 0n(z) be in I and 0,(z) 0 in la iff it converges uniformly to zero over every compact domain

contained in [l,.z[ < a. I is a vector space with addition and multiplication by a scalar given by

( + )() (z) + 2(z) for , E ira

(ct)(z) -ot(z) for I and oC.

We denote the dual of I by I’.
Suppose that C is an arbitrary closed curve in counter-clockwise direction containing zero in llmz < a.

Let CI and C2 be the parts of C in the upper and lower plane respectively. Thus C CI U C2.
We choose a fixed analytic branch such that Lnz tnlz + arg z (- < arg z <_ ) is an analytic

single-valued function. So is z=. By Cauchy’s formula,

,(z) dz.< (),(z) >= (0)= -- (I)

Similarly,
-I / (Z)dz (2)< ’(),() >= -’(0) /

In (1), we may think of as the Cauchy representation of 6(z) (cf. [3]). By the Cauchy Theorem

on analytic functions, we know that this representation is unique up to an analytic function on the strip.

We shall take this as the essential Cauchy representation. This suggests the possibility of operating on the

Cauchy representation to effect the same operation on 6(z). Thus we have

DEFINITION 1: The generalized function 6O(z) on la is given by

< 6,(z),,(z) >A=
(2i)1 (Z)dz,z o e R+, e I (3)

c

where C is defined above.

DEFINITION 2" If 6 and 6 e ven in Definition 1, then we tke the product 6a- 6

()dz< 6. 60, (z) >= (2gi)+0 zO+0 (4)

It is ey to s that the index law and the power re of differentiation below e satisfi:

6(). 6.() 6+() (5)

These properties suggest that the definitions above are reasonable.
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Our first main result is

THEOREM 1. ((z) belongs to the dual l’ for a E R+, and

+oo #"}(z)
for a # 1,2,3,.--, (7)hO(z)=2isin .Co (n-a%l)nnO

b"(z)= 2riC" b(,_,)(z for n 1,2,3,.... (8)
(.- I)

PROOF. Let (z) E Is and let ,=0 a,z" be the Taylor series which converges to 9(z) uniformly on

C. For a I, 2, 3,..-, equation (3) yields

(z) zn-adz
c n=0 c

(9)

C a z"-dz + z"-dz
n=O

Since is nMytic on {z "[Iz[ a- {0)), by Cauchy’s Threm, we cn sume that C ps the

x-xis t (- 1,0) nd (1,0).

Integrating and combining the right hand side of (9), we obtain

an< (),() >
=0

(0)
+ (_1)

2iCsin n-+l"

()(0) (_1) ((n)(z),(z) ), we infer thatSince the Tylor series coecient an

+ {)(z)
() ici ( + 1)’ ,,3,....

This proves equation (7). To prove equation (8) we let n, nd note that terms in the series vnish

except the (n- 1)th term. Thus,
2iCn() (_ )

-)()"

This concides with the result from the definition < n(z), (z) )= Cn (Zz dr.
c

Let m(z) 0 in I. There exists M ) 0, m m(z)] < M for MIm 1,2,3,-.., where ( a ( a.
1=

It follows from the fct that (z) is nMytic on lz a that

I")(o)1 < M(a)

1
Since a converges, it foUows from (10) that (z) g. Clearly, "(z) 1.

From Cauchy’s integrM formula,

(o) d.
c



752 E.L. KOH AND C.K. LI

We define

< (t")(z)),(z) >= C.,. ztm+,)a dz
c

where Cc, ((-l)"m:)2i

Replacing by (m + 1)o in Theorem 1.1 and quoting the result given in the threm, we get

THEOREM 2. (()(z))" e I and

2xiC, $(+_1(()(z))
(ink + k- 1) (z)

for 1,2,3,....

We now use Theorem to extend our definition to an analytic function of the Dirac distribution, 5(z).
+

Let l(z) be an analytic function on lzl < with I(0) O. We can sume thet I(*) *.

I(()) is defined on I in the following ay for () I.

By Theorem 1.1 we get

Hence, for < a < a,

+oo (_ )._v(._,)(0)< f(b(z)),o(z)>: a (2ri),_,(n I)!"n----I

+oo M(a)I< f($(z)),(z) >1 < I,,,,I ,,7_n"-I

The series on the right side converges and f((z)) is well defined.

A similar argument to the proof of Theorem can be used to show that f((z)) ( I. Here are two

examples. Since sin z and tn(1 + z) are analytic on [z[ < and vanish at z 0,

+
sin (z) (-1) 62n+1

,=o (2n + I)! (z),

and
+oo

n(1 + (z))= Z(-1
n----1

THE POWER ’(z) IN THE SCHWARTZ SENSE (n E N)
In Section 2, we define $a(z) on the space Ia. We shall now give a definition on the Schwartz space

of test functions D(R). We note that / and D(R) intersect at a single element {0}. Thus, we expect

different results when applying the definition of 6(x).
Let (t) e D(R). Construct the Hilbert integral (z) f+-o dt where Imz > 0. Since (t) has

a compact support, (z) is well defined. By a theorem about Dirichlet boundary problem of the upper

plane (see Chapter 5 of [6]) (z) is analytic on I,,.,z > 0 and lim Redo(z) p(x).
Imz--O+
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The following lemma will be needed.

LEMMA 1. Let (t) E D(R), then lim
Imz-O+

PROOF. Let (t) (/D(R). We integrate the following integral by parts

dt t)l+_ + dt
r, t- z xi (t-z)

r--, (t- z).+-------r

Since o(n)(t) D(R), we obtain

Imz-,O+

We may now use Lemma to define sn(x) as the boundary vue of $"(z ie) e 0+.

(z) d.< n(z)’ (x) > 0+lim Re < 6n(z- i),(z) > o+lim Re(2ri)n J (z i)

By Cauchy’s integral formula,

< "(z) (z) >= tim Re ("-)(i,)
_i)n_

("-)(0)
,-0+ (i).- (._ x) n(z)--( (.-

0 n=2k, k= 1,2,3,.--

()() n 2 % 1, 0, 1,2,....

Thus, we obtn our main threm

THEOREM 3.

for k 1,2,3,..-

and

$k+l(z) (-1)t8(t)(z)
(2x)2t(2k)

for k 0, 1,2,....

This theorem is quite similar to Theorem 1 of [5]. In both cases, the even powers of (x) turn out to be

zero while the odd powers are expressible as a constant multiple of a derivative of (x). This threm,

however, is obtMned without recourse to a delta sequence nor to Van der Corput’s neutrix Hmit, an idea

that requires a bit more machinery.
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