CORRIGENDUM

to the paper

A REMARK ON THE WEIGHTED AVERAGES FOR SUPERADDITIVE PROCESSES (INTERNAT. J. MATH. & MATH. SCI. VOL. 14, NO. 3 (1991) 435-438)

DÖGAN ÇÖMEZ

Department of Mathematics North Dakota State University Fargo, ND 58105

The proof of Theorem 3.2 in [1] contains an error. It is wrongly stated in [1] that a T-superadditive process is decomposed into the difference of a T-additive process G and a positive, purely T-superadditive process $H = \{H_n\} = \{\sum_{k=0}^{n-1} h_k\}$, and $h_k = f_k - T^k \delta$. Actually, the equality $h_k = T^k \delta - f_k$ holds for all k, and hence H must be a positive, purely T-subadditive process. Consequently, h_k 's need not be positive, and the inequality

$$\lim_{n} \sup |S_n(A,H)| \leq M \lim_{n} \sup \frac{1}{n} H_n,$$

which is asserted to be true in [1], need not be valid in general. On the other hand, if h_k 's are nonnegative for all k, then this inequality still holds. Nonetheless, the decomposition results of Section 2 of [1] are still true, with the forementioned corrections, whereas Theorem 3.2 is not true as it stands, but is true if all h_k 's are assumed to be nonnegative. Hence, the corrected statement of Theorem 3.2 should read as:

THEOREM 3.2. Let T be a positive Dunford-Schwartz operator on L_1 , or a positive L_p contraction for $1 , and F be a T-superadditive process with <math>h_k \ge 0$, for all k, where $\{\sum_{k=0}^{n-1} h_k\}_n$ is the purely subadditive part of the process. Assume also that

T is Markovian and $\sup_{n\geq 1} \|\frac{1}{n} F_n\| < \infty$, when p = 1, or

 $\lim \, \inf_n \| \frac{1}{n} \, \Sigma_{i=1}^n \left(F_i - F_{i-1} \right) \|_p < \infty, \text{ when } 1 < p < \infty.$

If A is a bounded sequence such that (A,T) is Birkhoff, then $\lim_{n \to \infty} \frac{1}{n} S_n(F,A)$ exists a.e.

It must be noted here that, when h_k 's are not necessarily nonnegative, $\lim_n \frac{1}{n}S_n(H,A)$ may not exist as the following simple example shows.

EXAMPLE. Let $h_k = (-1)^k$, $k \ge 0$. Then $\{H_n\} = \{\sum_{k=0}^{n-1} h_k\}$ is a subadditive sequence (assuming $H_0 = 0$). Define the sequence $A = \{a_k\}$ of weights as $a_0 = a_1 = 1$, and for $i \ge 0$,

$$a_k = (-1)^k$$
, when $3^i \cdot 2 \le k < 3^i \cdot 4$,
 $a_k = (-1)^{k+1}$, when $3^i \cdot 4 \le k < 3^{i+1} \cdot 2$.

Then $\frac{1}{n} S_n(H,A) = 0$, when $n = 3^i.2$, and is equal to 1/2 when $n = 3^i.4$, for all $i \ge 0$. Therefore we see that

$$\lim \sup S_n(H,A) = \frac{1}{2} \qquad \text{whereas } \lim \inf S_n(H,A) = 0.$$

ACKKNOWLEDGEMENT. The author is grateful to Professor M. Lin of the Ben Gurion University of the Negev, Israel, for bringing the error in [1] to his attention.

REFERENCE

 COMEZ, D., A remark on the weighted averages for superadditive processes, Internat. J. Math. & Math. Sci. 14 (1991), 435-438.