COMPLETELY POSITIVE LINEAR OPERATORS FOR BANACH SPACES

MINGZE YANG

Department of Mathematics University of Saskatchewan Saskatoon, Sask. Canada S7N 0W0

(Received January 9, 1992 and in revised form February 25, 1992)

ABSTRACT. Using ideas of Pisier, the concept of complete positivity is generalized in a different direction in this paper, where the Hilbert space \mathcal{H} is replaced with a Banach space and its conjugate linear dual. The extreme point results of Arveson are reformulated in this more general setting.

KEY WORDS AND PHRASES: Banach spaces, completely positive operators, extreme points, pure elements.

1980 AMS SUBJECT CLASSIFICATION CODES: 46L05, 47A67

1. INTRODUCTION.

In [6], Pisier studied completely bounded maps from a C^* -algebra to B(X,Y), the space of bounded operators between two arbitary Banach spaces X and Y. Of course, there is a generalization of ordinary completely bounded maps. In this paper, we first define complete positivity for a map from C^* -algebra to $B(X, \overline{X^*})$, where $\overline{X^*}$ denotes the antilinear dual space of X (the set of all conjugate linear functionals on X). Then we give a representation theorem, and give complete solutions to three extremal problems.

In this paper, the C^* -algebra A always has an identity.

2. COMPLETELY POSITIVE OPERATORS.

DEFINITION 2.1. Let X be a Banach space, and $T \in B(X, \overline{X^*})$. We call T positive if, for all positive integers n and $x_1, \ldots, x_n \in X$, we have

$$\sum_{i=1}^n \sum_{j=1}^n T(x_i)(x_j) \ge 0.$$

REMARK 2.2. We have $\overline{\ell_2^n(X)^*} = \ell_2^*(\overline{X^*})$, and so $M_n(B(X, \overline{X^*})) = B(\ell_2^n(X), \ell_2^n(\overline{X^*})) = B(\ell_2^n(X), \overline{\ell_2^n(X)^*})$. Thus we may define positivity for $M_n(B(X, \overline{X^*}))$.

DEFINITION 2.3. Let A be a C^{*}-algebra, ϕ a linear map from A to $B(X, \overline{X^*})$ and let $\phi_n(a_{ij}) = (\phi(a_{ij}))$ for $(a_{ij}) \in M_n(A)$. If ϕ_n is positive for all n, then we say ϕ is completely positive.

THEOREM 2.4. Let $\phi : A \longrightarrow B(X, \overline{X^*})$ be a completely positive map. There is a Hilbert space \mathcal{H} , a representation π of A on \mathcal{H} and a bounded operator $V \in B(X, \mathcal{H})$ such that, for all $a \in A$,

$$\phi(a) = \overline{V^*}\pi(a)V,$$

and $\mathcal{H} = [\pi(A)VX]$, where $\overline{V^*}(h)(x) = \langle h, V(x) \rangle$, for all $h \in \mathcal{H}, x \in X$.

PROOF: Consider the vector space tensor product $A \otimes X$ and define a bilinear form as follows: If $u = x_1 \otimes \xi_1 + \ldots + x_m \otimes \xi_m$, $v = y_1 \otimes \eta_1 + \ldots + y_n \otimes \eta_n$,

$$< u, v > = \sum_{i,j} (\phi(y_i^* x_j)(\xi_j))(\eta_i).$$

Because ϕ is completely positive, we have the fact that \langle , \rangle is positive semi-definite. For each $a \in A$, define a linear transformation $\pi_0(a)$ on $A \otimes X$ by

$$\pi_0(a)(\sum_{j=1}^n x_j \otimes \xi_j) = \sum (ax_j) \otimes \xi_j.$$

 π_0 is an algebra homomorphism for which

$$< u, \pi_0(a)v > = < \pi_0(a^*)u, v >$$

for all $u, v \in A \otimes X$.

For fixed u, $\rho(a) = \langle \pi_0(a)u, u \rangle$ defines a positive linear functional on A; i.e, $\rho(a^*a) \ge 0$. Hence, $\langle \pi_0(a)u, \pi_0(a)u \rangle = \langle \pi_0(a^*a)u, u \rangle = \rho(a^*a) \le ||a^*a||\rho(1) = ||a||^2 \langle u, u \rangle$, where 1 is the identity of A.

Now let $R = \{u \in A \otimes X : \langle u, u \rangle = 0\}$. R is a linear subspace $A \otimes X$, invariant under $\pi_0(a)$, for all $a \in A$. So $\langle \rangle$ determines a positive definite inner product on the quotient $(A \otimes X)/R$ in the usual way.

Let $\mathcal{H} = \overline{(A \otimes X)/R}$. There is a unique representation π of A on \mathcal{H} such that

$$\pi(a)(u+R) = \pi_0(a)u + R$$

 $a \in A, u \in A \otimes X.$

We define a linear map $V: X \longrightarrow \mathcal{H}$ by

$$V(\xi) = 1 \otimes \xi + R$$

for all $\xi \in X$.

We may verify that V is bounded, and $\phi(a) = \overline{V^*}\pi(a)V$ for all $a \in A$.

Let $R_1 = [\pi(A)VX] \subseteq \mathcal{H}$, and $\pi_1(a) = \pi(a)|_{R_1}$ for all $a \in A$. Because $\pi(1) = I$, so $V(X) \subseteq R_1$. We have $\overline{V^*}\pi(a)V(x_1) = \overline{V^*}\pi(a)|_{R_1}V(x_1) = \overline{V^*}\pi_1(a)V(x_1) = \phi(a)(x_1)$, for all $x_1 \in X$, $a \in A$. So we may assume that $\mathcal{H} = [\pi(A)VX]$.

Suppose $\phi: A \longrightarrow B(X, \overline{X^*})$ is a completely positive map. If there exists Hilbert spaces \mathcal{H}_i , representations π_i of A on \mathcal{H}_i , and bounded operators $V_i: X \longrightarrow \mathcal{H}_i$ then

$$\phi(a)=\overline{V_i^*}\pi_i(a)V_i$$

for i = 1, 2, where $\mathcal{H}_i = [\pi_i(A)V_iX]$. Define $U: \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ by

$$U(\sum_{i=1}^{n} \pi_{1}(a_{i})V_{1}\xi_{i}) = \sum_{i=1}^{n} \pi_{i}(a_{i})V_{2}\xi_{i},$$

for all $a_1, \ldots, a_n \in A, \xi_1, \ldots, \xi_n \in X$. Then we need to extend to \mathcal{H}_1 . We may verify that $UV_1 = V_2$ and $U\pi_1(a) = \pi_2(a)U$ for all $a \in A$. Next we verify that U is an unitary.

$$<\sum_{i=1}^{n} \pi_{2}(a_{i})V_{2}\xi_{i}, \sum_{i=1}^{n} \pi_{2}(a_{i})V_{2}\xi_{i} > = \sum_{i}\sum_{j} < \pi_{2}(a_{i})V_{2}\xi_{i}, \pi_{2}(a_{j})V_{2}\xi_{j} >$$

$$= \sum_{i}\sum_{j} < \pi_{2}(a_{j}^{*}a_{i})V_{2}\xi_{i}, V_{2}\xi_{j} >$$

$$= \sum_{i}\sum_{j} \phi(a_{j}^{*}a_{i})(\xi_{i})(\xi_{j})$$

$$= \sum_{i}\sum_{j} < \pi_{1}(a_{j}^{*}a_{i})V_{1}\xi_{i}, V_{1}\xi_{j} >$$

$$= <\sum_{i}\pi_{1}(a_{i})V_{1}\xi_{i}, \sum_{i}\pi_{1}(a_{i})V_{1}\xi_{i} > .$$

So the representation given in Theorem 2.4 is unique up to unitary equivalence.

3. PREPARATIONS.

NOTATION 3.1. Let CP(A, X) denote all completely positive linear maps from A to $B(X, \overline{X^*})$. **LEMMA 3.2.** Let ϕ_1 and ϕ_2 belong to CP(A, X), and suppose that $\phi_1 \leq \phi_2$. Let $\phi_i(a) = \overline{V_i^*\pi_i(a)V_i}$ be the canonical expression of ϕ_i , where π_i is a representation of A on R_i such that $[\pi_i(A)V_iX] = R_i, i = 1, 2$. Then there exsists a contraction $T \in B(R_2, R_1)$ such that

$$TV_2=V_1,$$

$$T\pi_2(a) = \pi_1(a)T$$

for all $a \in A$.

PROOF: For every $\xi_1 \ldots, \xi_n \in X, a_1, \ldots, a_n \in A$,

$$\begin{split} \|\sum_{j=1}^{n} \pi_{1}(a_{j}) V_{1}\xi_{j}\|^{2} &= <\sum_{j=1}^{n} \pi_{1}(a_{j}) V_{1}\xi_{j}, \sum_{j=1}^{n} \pi_{1}(a_{j}) V_{1}\xi_{j} > \\ &= \sum_{i} \sum_{j} \pi_{1}(a_{j}^{*}a_{i}) V_{1}(\xi_{i})(\xi_{j}) \\ &= \sum_{i} \sum_{j} \phi_{1}(a_{j}^{*}a_{i})(\xi_{i})(\xi_{j}) \\ &\leq \sum_{i} \sum_{j} \phi_{2}(a_{j}^{*}a_{i})(\xi_{i})(\xi_{j}) \\ &= \|\sum_{j=1}^{n} \pi_{2}(a_{j}) V_{2}\xi_{j}\|^{2} \end{split}$$

Define $T: R_2 \longrightarrow R_1$ by

$$T(\sum_{j=1}^{n} \pi_{2}(a_{j})V_{2}\xi_{j}) = \sum_{j=1}^{n} \pi_{1}(a_{j})V_{1}\xi_{j}$$

We can verify that above two statements hold.

NOTATION 3.3. For $\phi \in CP(A, X)$, let $[0, \phi] = \{\psi \in CP(A, X); \psi \leq \phi\}$. Let $\phi(a) = \overline{V^*}\pi(a)V$ for all $a \in A$. For each operator $T \in \pi(A)'$, define a map $\phi_T(a) = \overline{V^*}T\pi(a)V$. Then $T \longrightarrow \phi_T$ is linear. If $\phi_T = 0$, we have

$$< T\pi(a)V\xi, \pi(b)V\eta > = < T\pi(b^*a)V\xi, V\eta > = \phi_T(b^*a)(\xi)(\eta) = 0$$

$$< T\left(\sum_{i=1}^n \pi_i(a_i)V\xi_i\right), \sum_{i=1}^n \pi(b_j)V\xi_j >= 0.$$

So T = 0. That is, $T \longrightarrow \phi_T$ is injective.

THEOREM 3.4. $T \longrightarrow \phi_T$ is an affine order isomorphism of the partially ordered convex set of $\{T \in \pi(A)' : 0 \le T \le I\}$ onto $[0, \phi]$.

The proof of this theorem is exactly the same way as the proof of theorem in Arveson's paper [1].

4. THE THREE EXTREMAL PROBLEMS.

Now we come to discuss three extremal problems.

DEFINITION 4.1. A completely positive map $\phi \in CP(A, X)$ is pure if, for every $\psi \in CP(A, X)$, $\psi \leq \phi$ implies that ψ is a scalar multiple of ϕ .

REMARK 4.2. According to [3], the extreme rays of CP(A, X) can be characterized as the half lines $\{t\phi: t \ge 0\}$, where ϕ is a pure element of CP(A, X).

We state the following theorems without proofs, for the proofs are almost the same as those in Arveson's paper [1].

THEOREM 4.3. All nonzero pure elements of CP(A, X) are precisely those of the form $\phi(a) = \overline{V^*}\pi(a)V$, where π is an irreducible representation of A on some Hilbert space R and $V \in B(X, R)$, such that $R = [\pi(A)VX]$.

THEOREM 4.4. Let $\phi \in CP(A, X)$ and let $\phi(a) = \overline{V^*}\pi(a)V$ be its canonical representation. The extreme points of $[0, \phi]$ are those maps of the form $\overline{V^*}P\pi(a)V$, where P is a projection in $\pi(A)'$.

We consider the extreme points of the set $CP(A, X; K) = \{\phi \in CP(A, X); \phi(1) = K\}$, where K is a fixed positive operator in $B(X, \overline{X^*})$.

THEOREM 4.5. Let $\phi \in CP(A, X; K)$ and let $\pi(a) = \overline{V^*}\pi(a)V$ be its canonical representation with $\overline{V^*}V = K$. Then ϕ is an extreme point of CP(A, X; K) if and only if [VX] is a faithful subspace for the commutant $\pi(A)'$ of $\pi(A)$.

ACKNOWLEDGEMENT. The author thanks professor K. F. Taylor for helpful suggestions.

References

1. W.B.Arveson, Subalgebras of C*-algebras, Acta Math., 123 (1969), 142-224

2. W.B.Arveson, <u>An Invitation to C^{*}-algebra</u>, Springer-Verlag, New York, Heidelberg, Berlin, 1976.

3. G.Choquet, Lectures on Analysis, W.A. Benjamin Inc., 1969.

4. E.Christensen and A.M. Sinclair, A Survey of Completely Bounded Operators, <u>Bull. London Math</u> 21 (1989) 417-448.

5. V.I.Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in Math. Series, 1986.

6. G. Pisier, Completely Bounded Maps Between Sets of Banach Space Operators, <u>Indiana Univ. Mat</u> 39 (1990), No. 1, 249-277.

7. C.E.Rickart, Banach Algebras, Von Nostrand, Princeton, 1960.

8. S.Sakai, C*-algebras and W*-algebras, Berlin-Heidelberg-New York, Springer 1971.

9. W.F.Stinespring, Positive Functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

10. M.Takesaki, Theory of Operator Algebra I, Springer-Verlag, Berlin, 1979.