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ABSTRACT. In this paper, we have extended S.S. Chern’s second basic theorem about holomor-

phic mapping between two Riemann surfaces to more general case, and also obtained two similar

results.
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1. INTRODUCTION.

Since Nevanlinna founded value distribution theory of meromorphic functions in 1925, this

theory has achieved many results until now. In the case of several complex variable analysis, H.
Kneser [8] (1938), H.Cartan [4] (1932), L.Ahlfors [1] (1941), Levine-Chern [10], [6] (1960), Bott-
Chern [2] (1965), W.Stoll [11], [12], Carlson-Griffiths-King [3], [7] had’obtained different forms of

Nevanlinna theory. In 1960, S.S. Chern [5] used L.Ahlfors’ method and obtained two basic theorems

and inequality of deficient values about holomorphic mapping between two Riemann surfaces.

Let M be a compact Riemann surface, G be a Hermitian metric of M which has constant Gauss
curvature K. Let ft be the volume element of G. For every a E M, Chern has proved that there

exsits a real function U which is C on M- {a}, and satisfies:

A f, (1)

d dwhere ha Ua i(- 0) If z is a local coordinate function on the neighbour U of a,

such that z(a) 0, then Ua(z)+ log Izl is C on U. In [5], Chern proves the following theorems.

THEOREM A. Let D be a compact differentiable, orientable domain bounded by a sectiuonally

smooth curve OD, f D M is a differential mapping, if a E M such that, f- {a} fq OD ,
and f- {a} is a finite set of points, then we have:
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n(D,a) 4- L f,a v(D), (2)

THEOREM B, Let D be compact Riemann surface with smooth boundary 0D, f D M is

a holomorphic mapping, then

fa K + n,(D) x(M)v(D), (3)x(D) - o
where x(D) and x(M) are Euler’s characteristics of D and M respectively, n(D) is the station-

ary index of f in D.

For the :ase of holomorphic mappings, S.S.Chern gave the integral form of theorem A and

theorem B, and also proved the ralation inequlity of deficient values. In this paper, we replace f
by differential mapping, and also get similar results. We have the following main result.

THEOREM 1. Let D be compact Riemann surface with smooth boundary OD, if f D M is a

differential mapping, and if the critical points of f are all isolated points, f is orientation-preserving

except critical points. Then we also have equality (3).

2. The Proof of Theorem 1.

By using local coordinate z x + yi, we have G gdzd2 g(dx + dye), and ft gdz A d

9dx A dy, where 9 is a positive function which belongs to C.
Lemma 1 (Gauss-Bonnet formula). If A is a compact subset of M with smooth boundary 0A, let

K Kgds be the curvature form of 0A about G, where h’g is the curvature of 0A then

especially, x(M) fM
Now we define stationary index nl(D) of differential mapping of f D M as the following:

We suppose that crl,c,...,a, are the critical points of f in D- OD i.e. dr(%) O,j

1,2,..., n). Because f is orientation-perserving except the critical points), then the metric of G
on M can induce Hermitian metric f*G on D {al,... ,a,,}, f: D {a,,..., a,,} M is local

isometry mapping, so f*(Kfl)is equal to the product of Gauss curvature of

and volume element of fiG. We suppose that z, is the local coordinate function in the neigbohour

of , such that z,(o,) 0, W, {Iz] < }, W U;’=, W. We use K denote the geodesio curvature

form of OW about fiG.
Now we define stationary index I, of f at cq as the following:

fo K-l,io,
w.

and call n(D) r,"= i,, is the stationary index of f in D. We apply the lemma to the metric of

f*G in D W, then 2rx(D M) fop K + low K fn-M f(Kft), where the orientation of OW
is induced by the orientation of W. Clearly, x(D M) x(D) n, and lirrk_0 fn-w f*(Kft)
fD f’(Kf). So

/Df’(Kfi) 2rx(D)-/gK+2rlim?(1,_o-’rfow, K-1)
2x(D) roD K + 2rn,(O).

We notice that K is constant, then apply Gauss-Bonnet formula, we have:
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So we have

We are done.
In KA /D f’f x(M)v(D)2-- .f* Kl2 -r A

3. Integral Form of Theorem 1.

Let V be a open Riemann surface. Suppose that V has an infinite harmonic exhaustion function

v [13]. We also suppose that f V M is a differential mapping, and all critical points are

isolated points, f is orientation-preserving (except critical points), if is one-form on V, let *W be

the conjugate one-form.

We let U[r] {pit(p) < r}, if r is not the critical values of r, then U[r] is compact subset in U
with smooth boundary. Let n(r,a) n(V[r],a), v(r) v(U[r]), (r) (U[r]), n(r) n(U[r]).
For f, we use theorem l, we conclude

Jo K + n,(r) )4(M)v(r), (4)()
,tl

whcre K is geodesio curvature form of OV[r] about f’G. We can introduce function h such that,

f*fl hdr A ,dr on V U[r(r)], because f is orientation-persveing, so f*fl and V have the same

orientation, clearly, dr A ,dr and V have the same orientation, so h is nonnegative function, and

K 71dClogh, then we have fov[rlK 7l fov[d dClog(h). According to [13], we can use special
coordinate function a r + ip, so

dClog(h) O---d
log(h) + Olg(h)dpor

and

1L dClog(h)_ 1 0log(h) 0 1L log(h)*dr).

By using the method which we deal with holomorphic functions, we can introduce the following
functions: E(r) rio x(t)dt, Nl(r) rio n(t)dt, and T(r) rio v(t)dt, where r > r0 >_ r(r).
Because of (5), we have

(log(h))*dr[ x(M)T(r). (5)E(r) +/l(r)
u[,]

This is the integral form of theorem 1.
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