O-R-CONTINUOUS FUNCTIONS

C.W. BAKER

Department of Mathematics Indiana University Southeast New Albany, Indiana 47150

(Received December 4, 1992 and in revised form March 6, 1993)

ABSTRACT. A strong form of continuity, called θ -R-continuity, is introduced. It is shown that θ -R-continuity is stronger that Rcontinuity. Relationships between θ -R-continuity and various closed graph properties are investigated. Additional properties of θ -Rcontinuous functions are established.

KEW WORDS AND PHRASES. ∂-R-continuity, R-continuity, closed graph property, ∂-C-closed, almost-regular. 1980 AMS SUBJECT CLASSIFICATION CODE. 54C10, 54D10.

1. INTRODUCTION.

In this paper a strong form of continuity, which we call θ -Rcontinuity, is introduced. This form of continuity is stronger than R-continuity developed by Konstadilaki-Savvopoulou and Jankovic in [1]. As is the case for R-continuity, θ -R-continuity is closely related to regularity and the closed graph property. For example, the range of a θ -R-continuous function is R₁ and a θ -R-continuous function into a T₁-space satisfies a strong form of the closed graph property. Many of the results in Konstadilaki-Savvopoulou and Jankovic [1] carry over, with some modification, to θ -R-continuous functions. However, one result in [1] is extended to θ -R-continuous functions.

2. PRELIMINARIES.

The symbols X, Y, and Z represent topological spaces with no separation axioms assumed unless explicitly stated. For a subset A of a space X the closure of A, interior of A, and boundary of A are denoted by Cl A, Int A, and Bd A, respectively. The θ -closure of A, denoted by Cl_{θ} A, is the set of all x in X such that every closed neighborhood of x intersects A nontrivially. A set A is θ -closed provided that A = Cl_{θ} A and a set is θ -open if its complement is e-closed. A set A is regular open (resp. regular closed) if Int Cl A = A (resp. Cl Int A = A). If \neq is a filter base on a space X, then by $Cl_{\theta} \neq$ we mean the filter base { $Cl_{\theta} \in F : F \in \neq$ }.

DEFINITION 1. A function f: X \neg Y is R-continuous (Konstadilaki-Savvopoulou and Jankovic [1]) (resp. strongly θ -continuous (Long and Herrington [2]), weakly continuous (Levine [3])) if for every $x \in X$ and every open subset V of Y containing f(x), there exists an open subset U of X containing x such that Cl $f(U) \subseteq V$ (resp. $f(Cl U) \subseteq V$, $f(U) \subseteq Cl V$).

3. RELATIONSHIPS TO OTHER CONTINUITY CONDITIONS.

We define a function f: $X \Rightarrow Y$ to be θ -R-continuous if for each $x \equiv X$ and each open subset V of Y containing f(x), there exists an open subset U of X containing x for which $Cl_{\theta} f(U) \subseteq V$. The following theorem characterizes θ -R-continuity in terms of filter bases. The proof is straightforward and is omitted.

THEOREM 1. A function f: $X \rightarrow Y$ is θ -R-continuous if and only if for every filter base \mathcal{F} on X, if \mathcal{F} converges to x in X, then the filter base Cl_{μ} f(\mathcal{F}) converges to f(x) in Y.

Since for any set A Cl A \subseteq Cl_R A, e-R-continuity implies R-continuity (and hence implies continuity). The following example shows that the converse implication fails.

EXAMPLE 1. Let X = {a, b, c, d}, $\Im = {X, \emptyset, {c}, {c, d}, {a, b, c}}$ and f: (X, \Im) \Rightarrow (X, \Im) be the constant map f(x) = a for each x \in X. It is easily checked that f is R-continuous but not θ -R-continuous.

Since in a regular space the closure and θ -closure operators agree, obviously if f: X \rightarrow Y is R-continuous and Y is regular, then f is θ -R-continuous. Also because the closure and θ -closure operators agree on open sets, it follows that if f: X \rightarrow Y is R-continuous and open, then f is θ -R-continuous. R-continuity (and hence θ -Rcontinuity) implies strong θ -continuity (Konstadilaki-Savvopoulou and Jankovic' [1]). The following theorem establishes conditions under which this implication can be reversed.

DEFINITION 2. Jankovic and Rose [4]. A function f: $X \rightarrow Y$ is weakly θ -closed provided there exists an open basis \mathcal{B} for the topology on X for which $Cl_{\theta} f(U) \subseteq f(Cl \ U)$ for every $U \in \mathcal{B}$.

THEOREM 2. If f: X \rightarrow Y is strongly θ -continuous and weakly θ -closed, then f is θ -R-continuous.

PROOF. Let $x \in X$ and let V be an open subset of Y containing f(x). Since f is strongly θ -continuous, there exists an open subset U of X containing x for which $f(Cl \ U) \subseteq V$. Let \otimes be an open basis for the topology on X such that $Cl_{\theta} f(W) \subseteq f(Cl \ W)$ for every $W \in \otimes$. We may assume $U \in \otimes$, Thus $Cl_{\theta} f(U) \subseteq f(Cl \ U) \subseteq V$ and hence f is θ -R-continuous. \Box

In Konstadilaki-Savvopoulou and Jankovic⁽¹⁾ it is proved that a continuous function from a locally compact Hausdorff Space into a Hausdorff space is R-continuous. We shall prove that under these conditions the function is actually e-R-continuous. The essential reason is that a compact subset of a Hausdorff space is e-closed.

Except for the use of this fact, the proof is the same as in Konstadilaki-Savvopoulou and Jankovic [1].

THEOREM 3. If f: X - Y is continuous, X is locally compact Hausdorff, and Y is Hausdorff, then f is e-R-continuous.

PROOF. Since X is locally compact Hausdorff, X is regular and therefore f is strongly Θ -continuous. From the local compactness of X, we obtain an open basis \mathbb{G} for the topology on X consisting of sets with compact closures. Let $U \in \mathbb{G}$. Since f is continuous, f(C|U) is compact in Y and hence Θ -closed because Y is Hausdorff. Thus $Cl_{\Theta} f(U) \subseteq Cl_{\Theta} f(C|U) = f(C|U)$. Therefore f is weakly Θ -closed and hence by Theorem 2 f is Θ -R-continuous. \Box 4. CLOSED GRAPH PROPERTIES.

From Konstadilaki-Savvopoulou and Jankovic [1] the graph of an R-continuous function into a T_1 -space is e-closed with respect to the domain. In this section an analogous result is proved for e-R-continuous functions.

DEFINITION 3. Baker [5]. A subset U of a space X is ∂ -C-open provided there exists a subset A of X for which U = X - Cl_A A.

DEFINITION 4. Let f: X \Rightarrow Y be a function. The graph of f, denoted by G(f), is \exists -C-closed with respect to X if for each (x, y) G(f) there exist subsets U and V of X and Y, respectively, with x \in U, y \in V, U open, V \exists -C-open, and ((Cl U) \times V) \cap G(f) = \emptyset (or equivalently f(Cl U) \cap V = \emptyset).

THEOREM 4. If f: X \Rightarrow Y is P-R-continuous and Y is T_1 , then G(f) is P-C-closed with respect to X.

PROOF. Assume $(x, y) \notin G(f)$. Since $y \neq f(x)$ and Y is T_1 , there exists an open subset V of Y such that $f(x) \in V$ and $y \notin V$. The ∂ -R-continuity of f implies the existence of an open subset U of X containing x such that $Cl_{\beta} f(U) \subseteq V$. Therefore $(x, y) \in (Cl \ U) \times (Y - Cl_{\beta} f(U))$ which is disjoint from G(f) because if $a \in Cl \ U$, then $f(a) \in f(Cl \ U) \subseteq Cl \ f(U) \subseteq Cl_{\beta} f(U)$. Note that Y - $Cl_{\beta} f(U)$ is ∂ -C-open. \Box

Next we establish conditions under which a weak form of continuity and some type of closed graph property imply θ -R-continuity.

DEFINITION 5. Jankovic and Rose [4]. The graph of a function f: $X \Rightarrow Y$ is θ -closed with respect to Y if for each $(x, y) \notin G(f)$, there exist open subsets U and V of X and Y, respectively, with $x \in U$, $y \in V$, and $(U \times Cl \ V) \cap G(f) = \emptyset$ (or equivalently $f(U) \cap Cl \ V = \emptyset$).

DEFINITION 6. Singal and Arya [6]. A space X is almost-regular if each regular closed set C and each $x \in X - C$ can be separated by disjoint open subsets of X.

The assumption that the codomain is almost-regular is required in several of the following theorems. Note that under this assumption, θ -R-continuity is not equivalent to R-continuity. The space in Example 1 is almost-regular whereas the function is Rcontinuous but not θ -R-continuous.

From Jankovic and Rose [4] we have that a space X is almostregular if and only if regular closed sets are θ -closed. This fact is used in the following proof. DEFINITION 7. Konstadilaki-Savvopoulou and Jankovic [1]. A space X is rim-compact provided there exists an open basis for the topology on X consisting of sets with compact boundaries.

THEOREM 5. If f: X = Y is weakly continuous and has a θ -closed graph with respect to Y and Y is rim-compact and almost-regular, then f is θ -R-continuous.

PROOF. Let $x \in X$ and let V be an open subset of X containing f(x). Since Y is rim-compact, there exists an open subset W of Y for which $f(x) \in W \subseteq V$ and Bd W is compact. The weak continuity of f implies the existence of an open subset U of X containing x such that $f(U) \subseteq C1$ W.

Let $y \in Bd W$. Since $f(x) \in W$ and $W \cap Bd W = \mathfrak{o}$, $(x, y) \notin G(f)$. Because G(f) is θ -closed with respect to Y, there exist open subsets A_y and B_y of X and Y, respectively, for which $x \in A_y$, $y \in B_y$, and $f(A_v) \cap Cl B_v = \mathfrak{o}$. It follows that $(Cl_{\theta} f(A_v)) \cap B_v = \mathfrak{o}$.

The collection $\{B_y : y \in Bd \ W\}$ is an open cover of Bd W, which is compact. Hence there is a finite collection $\{B_{yi} : i = 1, 2, ..., n\}$ for which Bd W $\subseteq \cup \{B_{yi} : i = 1, 2, ..., n\}$. Let $U_0 = U \cap (\cap \{A_{yi} : i = 1, 2, ..., n\})$. Then $Cl_{\theta} f(U_0) \subseteq$ $Cl_{\theta} f(\cap \{A_{yi} : i = 1, 2, ..., n\}) \subseteq Cl_{\theta} \cap \{f(A_{yi}) : i = 1, 2, ..., n\}$ $\subseteq \cap \{Cl_{\theta} f(A_{yi}) : i = 1, 2, ..., n\}$ which is disjoint from $\cup \{B_{yi} : i = 1, 2, ..., n\}$ and hence disjoint from Bd W. Therefore $(Cl_{\theta} f(U_0)) \cap Bd \ W = \emptyset$. However, $Cl_{\theta} f(U_0) \subseteq Cl_{\theta} f(U) \subseteq Cl_{\theta} Cl \ W =$ $Cl \ W$. (This last equality follows from the fact that Cl W is regular closed and Y is almost-regular.) Thus we have that $Cl_{\theta} f(U_0) \subseteq$ $(Cl \ W) - Bd \ W \subseteq W \subseteq V$ and therefore f is θ -R-continuous. \Box 5. ADDITIONAL PROPERTIES.

In Konstadilaki-Savvopoulou and Jankovic [1] it is proved that a function f: $X \rightarrow Y$ is R-continuous if and only if for every $x \in X$ and every closed subset F of Y with $f(x) \notin F$, there exist open subsets U and V of X and Y, respectively, such that $x \in U$, $F \subseteq V$, and $f(U) \cap V = \rho$. The following three theorems are analogous results for ρ -R-continuous functions.

THEOREM 6. If f: X \Rightarrow Y is θ -R-continuous, then for every $x \in X$ and every closed subset F of Y such that $f(x) \neq F$, there exists an open subset U of X containing x and a θ -C-open subset V of Y with F \subseteq V such that $f(C|U) \cap V = \rho$.

PROOF. Let $x \in X$ and let F be a closed subset of Y with $f(x) \in X - F$. There exists an open subset U of X containing x such that $Cl_{\theta} f(U) \subseteq Y - F$. Let $V = Y - Cl_{\theta} f(U)$. Then V is θ -C-open and $F \subseteq V$. Since f is continuous, $f(Cl U) \subseteq Cl_{\theta} f(U) \subseteq Cl_{\theta} f(U)$. Therefore $f(Cl U) \sqcap V = \beta$. \Box

If the condition that V be θ -C-open is replaced with the stronger requirement that V be θ -open, then the implication in Theorem 6 can be reversed.

THEOREM 7. Let f: X \Rightarrow Y be a function. If for every x \in X and every closed subset F of Y with f(x) \notin F there exists an open subset U of X containing x and a θ -open subset V of Y with F \subseteq V such that f(U) \cap V = σ , then f is ϑ -R-continuous. PROOF. Let $x \in X$ and let V be an open subset of Y with $f(x) \in V$. Let F = Y - V. Since $f(x) \notin F$, there exists an open subset U of X containing x and a ϑ -open subset W of Y with $F \subseteq W$ and $f(U) \cap W = \vartheta$. Then $f(U) \subseteq Y - W$. Thus $Cl_{\vartheta} f(U) \subseteq Cl_{\vartheta} (Y - W) = Y - W \subseteq Y - F = V$. Therefore f is ϑ -R-continuous.

In an almost-regular space $\operatorname{Cl}_{\varTheta} \operatorname{Cl}_{\varTheta} A = \operatorname{Cl}_{\varTheta} A$ for any set A (Jankovic and Rose [4]). It follows that in a almost-regular space \varTheta -C-openness is equivalent to \varTheta -openness. Therefore we have the following result.

THEOREM 8. Let X and Y be topological spaces with Y almostregular. Then f: X \Rightarrow Y is θ -R-continuous if and only if for every x \equiv X and every closed subset F of Y with f(x) \notin F, there exist an open subset U of X containing x and an θ -C-open subset V of Y with F \subseteq V such that f(U) \cap V = σ .

In the definition of R-continuity the condition "Cl $f(U) \subseteq V$ " can be replaced with "Cl $f(Cl U) \subseteq V$ " (Konstadilaki-Savvopoulou and Jankovic [1]). If we require the codomain to be almost-regular, the following similar result holds for ϑ -R-continuity.

THEOREM 9. Let X and Y be topological spaces with Y almostregular. Then f: X \Rightarrow Y is e-R-continuous if and only if for each x \equiv X and each open subset V of Y containing f(x), there exists an open subset U of X containing x such that Cl_{θ} f(Cl U) \subseteq V.

PROOF. Assume f: $X \rightarrow Y$ is \in -R-continuous. Let $x \in X$ and let V be an open subset of Y containing f(x). Then there exists an open subset U of X containing x such that $Cl_{\Theta} f(U) \subseteq V$. Since f is continuous, $Cl_{\Theta} f(Cl \ U) \subseteq Cl_{\Theta} Cl f(U) \subseteq Cl_{\Theta} f(U)$ and since Y is almost-regular, $Cl_{\Theta} Cl_{\Theta} f(U) = Cl_{\Theta} f(U) \subseteq V$. Thus $Cl_{\Theta} f(Cl \ U) \subseteq V$.

The converse implication is immediate. \Box

In Konstadilaki-Savvopoulou and Jankovic [1] the range of an Rcontinuous function is shown to be R_0 . Here we show that the range of a θ -R-continuous function satisfies the stronger R_1 condition. The following definition is implicit in Theorem 3.1 in Jankovic [7].

DEFINITION 8. Jankovic [7]. A space X is R_1 if for each open set U and each $x \in U$, $Cl_{\theta} \{x\} \subseteq U$.

THEOREM 10. If f: X \rightarrow Y is a θ -R-continuous surjection, then Y is R₁.

PROOF. Let $y \in Y$ and let V be an open subset of Y containing y. Let $x \in X$ such that y = f(x). Since f is ∂ -R-continuous, there exists an open subset U of X containing x for which $Cl_{\partial} f(U) \subseteq V$. Then $Cl_{\partial} \{y\} \subseteq Cl_{\partial} f(U) \subseteq V$. \Box

We close this section with a sample of the basic properties of θ -R-continuous functions concerning composition and restriction. Most of these are analogues of the corresponding properties for R-continuous or continuous functions. The proofs are straightforward and are omitted.

THEOREM 11. If f: X \rightarrow Y is continuous and g: Y \rightarrow Z is θ -R-continuous, then gof: X \rightarrow Z is θ -R-continuous.

COROLLARY 1. If both f: X \Rightarrow Y and g: Y \Rightarrow Z are θ -R-continuous, then gof: X \Rightarrow Z is θ -R-continuous.

	THEOREM 12.	If f:	X \neg Y and g: Y \neg Z are functions with	
gof:	$X \Rightarrow Z \in R-cor$	ntinuou	ous, and f is an open surjection, then g is	
P-R-continuous				
	THEOREM 13.	If f:	$X \Rightarrow Y$ is ∂ -R-continuous, $A \subseteq X$, and $f(A) \subseteq H$	B
⊆ Y,	then fi _A : A -	B is	e-R-continuous.	

REFERENCES

- Konstadilaki-Savvopoulou, Ch. and Jankovic, D., R-continuous functions, <u>Internat. J. Math. & Math. Sci. 15</u> (1992), 57-64.
- Long, P.E. and Herrington, L.L., Strongly &-continuous functions, J. Korean Math Soc. 18 (1961), 21-28.
- 3. Levine, N., A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46.
- 4. Jankovic , D.S. and Rose, D.A., Weakly closed functions, manuscript.
- 5. Baker, C.W., On ∂-C-open sets, Internat. J. Math. & Math. Sci. 15 (1992), 255-260.
- Singal M.K. and Arya, S.P., On almost-regular spaces, <u>Glas</u>. <u>Mat</u>. <u>Ser</u>. <u>III</u> <u>24</u> (1969), 89-99.
- 7. Jankovic D., On some separation axioms and 0-closure, <u>Mat. Vernik</u> <u>17</u> (1980), 439-449.