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1. INTRODUCTION
Many problems in applications are formulated as

(x,X)-o,

where G:H x fft H is a smooth (nonlinear) map satisfying

a(0,)-0;

H is a real Hilbert space and ,. is a real parameter which often represents some physical quantity.

The solution curve F0: xo(.)- 0 is called the trivial solution curve. A point (0,)E F is called a

bifurcation point if there exists a smooth curve Fl:xl xl(.) of nontrivial solutions of (1.1)which is defined

in some neighborhood of (0, ko) and passing through it. It follows from the Implicit Function Theorem that

a necessary condition for (0, :k0) to be a bifurcation point is that the Frechet derivative G,,(0, ko) is singular.
On the other hand the singularity ofGx(0, k0) is not a sufficient condition for (),) to be a bifurcation point.
Some sufficient conditions for (0,ko) E Fo to be a "simple" bifurcation point will be stated in Section 2.

This paper is concerned with the numerical computations of the nontrivial solution curves of (1.1) in

a neighborhood of a simple bifurcation point (0, k0). Many excellent analytical and numerical treatments

of this problem exist in the literature. The reader is referred to [1]-[7], and the references therein for an

extensive account of the subject. In almost all the previous numerical works the parameter . is treated as

a variable and is determined along with the "state" variable x. However, in applications . represents a

physical parameter and it is often required to determine the state variable x for some given values of the

parameter .. In this paper we examine the applications of Newton’s and chord methods in solving (1.1)
for x while . is kept fixed near a simple bifurcation point

The rest of the paper is organized in three sections. In Section 2 we present some well known pre-
liminary results, regarding the solution set of (1.1) which are based upon the Implicit Function Theorem

and state a convergence theorem for Newton’s and chord methods due to G. Moore [7]. In Section 3 we

present and prove the convergence ofsome numerical schemes for computing the nontrivial solution curves

of (1.1) in a neighborhood of a simple bifurcation point (0,0) for given values of the parameter X. In

(1.1)

(1.2)
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section 4we illustrate the use ofthe schemes developed in Section 3 by applying them to a finite dimensional

numerical example.

2. PRELIMINARIES
All the results and proofs stated in this section are well known and we present them here for com-

pleteness. We present some sufficient conditions for a point (0,) of re to be a bifurcation point and state

a basic convergence theorem for Newton’s and chord methods.

We assume that the Frechet derivative G . G,(0,) satisfies, for some R, the conditions

(a) N(G) is one-dimensional spanned by ,(,) 1,

Co) N(G) is one-dimensional spanned by V , 0,

(c) R(a)-(a7 andR(a=’)-(a, (2.1)

(d) a (,,Gx) 0,

(e) <,,) ,
where G G,(0, o) and the notations L*, N(L) and R(L) denote the adjoint operator, the null and the

range spaces ofa linear operatorL, respectively. Underthe assumptions (a)-(e) of(2. I), (0, 0) is abifurcation

point. To see this we decompose H as

H -<)RCG). (2.3)

using (2.3), each x H can be written in the form

x + ’, (2.4)

for unique e l and , R(G,’). Writing , X0 + I, using (2.4) and

n ()(0).
we can decompose equation (1.1) into the two equations

(i) (+.,.+)-(.(+.,.o + ))u- 0.
(2.)

(ii) (,(+.,.xo + )) 0.

Let K(, e, t) denote the left hand side of equation (i) of (2.5). Then K(0, 0, 0) 0 and Kw(0, 0, 0) G,,
which has bounded inverse fromR(G) to R(G,). This enables us to apply the implicit Function Theorem
to equation (i) of (2.:5) to conclude the existence and uniqueness of a smooth function ,(e, ) defined

in some neighborhoodM of (0,0), such that

K(.,(. ). .) 0. (,).
It follows that, in M, equation (1. I) reduces to

g(.)= (,(+.,(. ,). z0 + )) 0. (2.6)

Defineh (e, I) g( I). Since h (0, 0) 0 and h,(O, O) a ,, O, we can apply the Implicit Function Theorem

to conclude the existence and uniqueness of a smooth function ILt(e) defined in some neighborhood of e 0

such that
(.()) 0.

for each I in thal neighborhood.

The smoothness of ,(e,) and e) allow us to expand about e 0 to obtain the following expansions

.(.,)- e..,. +%+ o((I I +I,I )), (2.7)
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where

I.t(e,)
Eo Esa +EE2 +Eoe2--- a

+() (2.8)

(a) w] A’9 G G:xt# a

(c) Eo <,G**>,
I- 1 1

() E2 <V, GfkWl>,
2 1 1

A’ andA" arc paramctem to be dcteincd by e conditions (#,w>-0 and <@,w-0, respectively, and

G denotes G=(0,), etc.

Wc gather c conclusions ofc above compumtio c following corcm.
2.1 eorem: A int (0,) on F0 which tisfics conditions (a)-(c) of (2.1) a birtion int.
Furthermore, crc cxism exactly one bifurcation branch of lutions (x(),)) pag rou (0,)
which is (locally) vcn by

x() # + w(,)),

M) +),

where w(g,)) and z) are ven by (2. and (2.8), respectively.

Wc now state a convergence result for Newton’s and chord meod om [7].
2.2 eorem: tH andH2 bc Hilbc spaces and F(U,) be a mapping omH, x into H2. ume
that F is continuously diffcrcntiable with respect m Ud continuous with respect to 5. t U(5) bca
continuous mapping om + into H, such at for me 6 > 0, FU(6),6) has a bounded veme T()
for all 0 < 6 < 6 which tisfics

(a) (((),)I n(),

) [Ir()[FU,)-FAV,)][I (), for U, VeN()(()),
whcrcN()(U(5)) is c nciborhood of(5) with radius 2(b) and (b) and (b) tis(b(b)

as b 0. cn crc cxism 0 < bx and a continuous mappg U*(b) om (0,
unique solution ofF(U, 5) 0 in N()(U(5)) and c Newton’s iterates

u. u. Fb,(u.,(u.,)

converge m U*(6) for cach 6 (0, ).
Fuhcrmorc, if condition ) is replaced by

() [17(){Au(),)(u--[F(u,)-F(v,)]}ll -()llU-Vll for

where (6) 6) as 6 0, cn crc cxism 0 < 6 and a continuous mapping U*() om (0,) into

Ht such at U*(6)is c iquc lution ofF(U,6)= 0 in N()(U(6)) and c chord itcratcs
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u" u" :(u(),)(u’,),
converge to U*(6) for each 6

NEWTON’S AND CHORD METHODS
In [6], Decker and Keller introduced a method for constructing the bifurcation branches near a simple

bifurcation point (0, Ao). In that paper the equation

G(e# + w, ku + it) 0, (3.1)

was replaced by an "inflated" system

[C+,zo + )]F(y,e)-
[(#,w>

-0, (3.2)

where y "(/6H x[R. Using the initial guess y-0, they proved the convergence of Newton’s and

chord iterates of 0.2) to a nontrivial solution y() of 0.1) for each given e in 0 I1 h, provided e0 is

small enough. Thus, in this method both the state variable x and the bifurcation parameter k are treated as

unknowns and are approximated as functions of the parameter e. This method cannot be used in practical

problems where it is required to approximate the state variable x for some given values of k. On the other

hand it is not possible in general to parameterize x using the bifurcation parameter k; for example; in the

case when nontrivial solutions only occur at the bifurcation point. This shows that some additional

assumptions are to be imposed.
In addition to conditions (a)-(e) of (2.1) we will assume that either

(Non-degenerate case) E ,, 0 (3.3)

a
(Degenerate case) E 0, E ,, 0, ss < 0, (3.4)

hold, and show that the methods of [6] can be modified to approximate the nontrivial solutions of (3.1)
with k being fixed near the bifurcation point

Let H, denote the Hilbert spaceH x 9] with inner product

and define F: H, x R Ht by

F(U’k)" G(’# + w’k)l(#,w) (3.5)

for U () 6Hx,Z6 R. For fixed k, using (2.7) and (2.8) we define the initial guesses

uO(k).() .-a(k-kO)Eo k6, (3.6)

(2v) /-a(k- ko)
kku (3.7)u(x)- i +/-

for the non-degenerate case (3.3) and degenerate case 0.4), respectively.

For a ven k near we will prove at both of Newton’s and chord iterates with initiale (3.6)

or 0., according m whether condition 0.3) and 0.4) hold, converge to a ique nontrivial lution U*
ofe equation
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where b(:) + bz2(:) and b(.)b2(.) br,(;)bm(;). From (3.8) we have

a) FuC.)cp(. b()() + bx=C)(
Differentiating equation (a) with respect to , setting 0 and ing (3.10) we obtain

0

for the non-degenerate case (3.3), and

for the degenerate case (3.4). e solvability conditions of) and (c) are

(d) 62(0) fo,

and

(e) 6(0) 6(0) 0,

respectively. From (d) it follows that e eigenvalues ofB() are ofe fo (3.12) with y- . It follows

from (e) at

for some constant . Differentiating equation (a) once more and setting 0 Nves

4Gqw2 + 2Gw2 +G0-aaa] +FI(O ,,(0, +
0

whose lvability condition is

g,(0) 4e,

and is proves that e eigenvalues ofB() in e degenerate case are ofe fo (3.12) with y 1.

following result follows from mma 3.1.

3.2 a: For small enough > 0 e linear operatorF) has a bounded invee such at

where is as in mma 3.1.

To ex.mine e convergence of Newton’s .ha chord iter.tes we need to estim.te

is done in e following mma.
3.3 For small enough 0 we have

where y is as in mma 3.1.

Proof: We note at for e non-degenerate case

E0

0

and for the degenerate case



152 M.B.M. ELGINDI

F(U,.)-O

We will denote F(U,.),Fu(U,.) and Fu(U,Xo) by F(.), Fu() and F, respectively.

We observe that

<,, .>
and at mma 5.6 [6] implies atF,F) andF) tisfy e propeies

(i) F , a Fredholm operator with zero dex, where N(F) and N(F) are spanned by O, ()

(ii)

(iii)

b() b()B(:) b21(: bz(: and /(:)

defined for I:I < 6, for some 6 > 0, such that

the zero eigenvalue ofF has algebraic multiplicity two,

there exist smooth functions 01(:), O(e), FI(:), q(:),

L=(=) ,()j

(3.9)

B(0)’/(0)’[ 01 00] (3.10)

there exists 6 > 0 such that for each : in ]:[ < 6 the restriction of the linear operator F(:) to the(iv)

subspace N(:) spanned by (:) and ([:) has two eigenvalues which are the same as those for B([:).
Furthermore,H can be decomposed into

H N(:) (H(:), (3.11)

where

H([)-{U (F.H:(,(.),U)-O,i- 1,2},

and the restriction ofFv(:) to H(:) has bounded inverse.

It follows from property (iv) above that in order to examine the rate at which F?()ll tends to infinity

as : tends to zero it is enough to examine the behavior of the two eigenvalues ofB(:). Those eigenvalues
are studied in the following lemma.

3.1 Lemma: The two eigenvalues ofB(:) have the form

t C[:’ + 0((:’)2), (3.12)

where C is constant and ] or 1 according to whether condition (3.3) or (3.4) is satisfied, respectively.

Proof: The eigenvalues ofB (:) are given by
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F(,) 4G=tw2 + 2Gw2t# + Gt#t#
0

It follows from these relations that

for the non-degenerate case, and

P,(:),F(:)) 0(:3), 1,2,

PiC[),F(:)> 0(:4), 1,2,

for the degenerate case. From (3.11), F(:) can be written (uniquely) as

F() l(I)l() + 2(I)2() + hick),

for some constan St, and some h([) H([). Furthermore, e constants and are deteined by

the relations

(),F()>,

C),FC)>
Ths rlations and $ fact Sat F[) has n bounded inv on H([) imply $ estimnt

cC)li c)cc)+ ,,c))ll +

[’) + 0([’)

It follows om mmas 3.2 and 3.3 Sat th nctions q([) and ([) oform 2.2 satisfy

n([) [’) and C[) 0([),
for both $ nondegnrat and dgnrat cas. is proves $ following $orem,

,4 orm, rxists > 0 such Sat for in 0 <- < [, both of Nwton’s and hord iterates

with initial o([) =onvrg to a uniqu solution U* of$ equation

FC,k)-0.

NUMERICAL EXAMPLE
In this section we illustrate the use of the numerical schemes developed in Section 3 by applying them

to approximate the nontrivial solutions of the (finite dimensional) equatioa

3

G
1

-0,

x +x+x+(1- X)z

in a neighborhood of the simple bifurcation point (0,0), for several prescribed values of the bifurcation

parameter ..
Using the same notations as in Section 3 we note that the inflated system corresponding to (4.1) is

W1
W "I" (W 4" E) 4" (W "I" E)W2 (W "I" E)

w

and, for a given . near 0, the initial guesses for the nontrivial solutions are given by

(4.1)
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E(o) :t:

for both Newton’s and chord methods.

In Table 4.1 we present the numerical results obtained by applying Newton’s and chord methods to

(4.2) using the initial guesses (4.3). In this table (w,w2t, eti}), 1, 2, denote the two nontrivial solutions

of (4.2) andN and C denote the number of iterations required for the convergence of Newton’s and chord

methods, respectively.
4.1 Remark. As expected, Table 4.1 shows that the number of iterations needed for the convergence of

the chord method is larger than that for Newton’s methods and that both of them increase as . increases

away from the bifurcation point.
4.2 Remark. Observe that the numerical schemes developed in Section 3 may be used to approximate

the bifurcation solutions corresponding to different values of . near the bifurcation point in parallel.

.01

.05

.10

.15

.20

.25

.30

.35

.40

(0, -1.00(-4), 1.00(-1))

(0, -2.56(-3), 2.24(-1))
(0,-1.05(-2), 3.16(-1))
(0, -2.40(-2), 3.86(-1))
(0, -4.32(-2), 4.44(-1))

(0, -6.75(-2), 4.93(-1))

(0, -9.60(-2), 5.35(-1))

(0,-1.28(-1),5.70(-1))

(0,-1.61(-1), 6.00(-1))

(2) (2)
,r,,

(0, -1.00(-4), 1.00(-1))

(0, -2.56(-3), -2.24(-1))

(0,-1.05(-2), -3.16(-1))

(0, -2.40(-2), -3.86(-1))

(0, -4.32(-2), -4.44(-1))

(0,-6.75(-2), -4.93(-1))

(0, -9.60(-2), -5.35(-1))

(0,-1.28(-1), -5.70(-1))

(0, -1.61(-1), -6.00(-1))

N C

2 2

3 3

3 4

4 5

4 7

4 9

5 12

5 19

5 28

TABLE 4.1
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