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ABSTRACT. We obtain that certain second order differential equations have discontinuous

solutions which behaves asymptotically as straight lines.
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1. INTRODUCTION.
Many applied problems in physics, biology, economics, etc., are submitted to noncontinuous

perturbations. Biological systems such as heart beats, blood flows, pulse frequency modulated

systems and models for biological neural nets exhibit an impulsive behavior. This justify the

increasing interest on the differential equations with impulse action.

We wish to study the second order impulsive differential equation

where

and

y’(t) f(t,y(t),y’(t)), ti, > a > 0 (P1)

Ay(t) gl(t,y(t),y’(t)), (P2)

Ay’(t) g2(t,y(t),y’(t)), (P3)

Y(to) YO’a < tO < tl (P4)

AY(ti) y(tt )- y(ti)

v {ti} C I [a,c), < + 1-cx) as i-oc.

We assume the following basic hypotheses

(F) f: I x C2-,C a continuous function such that

f(t, yl,Y2) <_ Al(t) ly11 +A2(t) lY2l-
(G)

()

gi:vx G’C(i 1,2) are two continuous functions such that

gi(t, Yl,Y2) <_ 7i(t)(lYl + Y21)i 1,2.

(s) Sl(S + 2(s) LI(I), 7(tk) tk72(tk)+ 71(tk)E 1.

(1.1)

(1.2)

We will demonstrate that for every o > a > 0, any solution y of problem (P) is defined on all

of [t0,o and as t--.o, it satisfies

and
y(t) tl + 0(A(t)) + (t2 + 0(A(t)))t (1.3)
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v’(*) 2 + 0(A(t)),

where 6i(i 1,2) are constants and

+A(t)
tk G (t,c)

Furthermore, under the stronger condition

(I’) S2Al(S),SA2(s) E Ll(I);tg72(tk),tkTl(tk) ’1"
the relation

holds, where

y(t) 61 +62t + 0(Al(t)), t-oo

(1.4)

(1.5)

(1.6)

u(t) < cezp to (t0’t
where

-r(t)= (t).
(t0,t) k (to, t)

2. MAIN RESULTS.
We will prove the following results:

THEOREM 1. Under conditions (F), (G), and (I), for every o _> a > 0 any solution v of

problem (P) is defined on all of [t0,oo and it satisfies formulae (1.3) and (1.4).
THEOREM 2. Under conditions (F), (G), and (I), there exist nonoscillatory solutions v of

problem (P).
THEOREM 3. Under conditions (F), (G), and (I’), the conclusion of Theorem is true and

formula (1.6) holds. Moreover, there exists solutions v of problem (P) satisfying (1.6) with i # 0

(i 1,2).
PROOF’ OF" THEOREM 1. Let

y= A(t)+ B(t)t (2.1)

u(t) < c + to ,(s)u(s)ds + E 7(tk)u(tk)’ > o
(t0, t)

under the condition
At(t) + Bt(t)t 0 for # i.

Then
v’(t) B(t)

and hence
B’(t) (t), for # i,

where (t)= (t,v(t),v’(t)). Solving equations (2.1)-(2.4) we get for # i.

A(t) A(to)- f o s(s)ds

B(t) B(tO) + f ioTf(s)ds.

(2.2)

(2.3)

(2.4)

(2.5)

implies

In this way, we extend the classical Ghizzetti’s Theorem [2] for ordinary differential

equations (see [5] to [9]) to problem (P).
Let Iv I and Cv+ (I) {u 6 C(lv)/U(ti- u(ti) and u(t" exist 1,2,. }. As usual,

u(tf-) and u(t) denote the left and right limit of u(t) as t--,t
i.

Next, we establish without proof (see [1], [3]) a Gronwall’s inequality.
LEMMA 1. Let be 0 < u,, 6 Cv+ ([t0,oo)),7:v-.[0,oo) and c _> 0. The inequality

c
s(s)ds + E tkT(tk)"Al(t) (1.7)

tk (t, oe)
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For the impulse effect, from

we get
Av AA A(Bt) AA + tAB

AA + tAB 1

where

So

AB .:,

i(t) i(t,y(t),y’(t)).

,XA (t)- O(t),
AB (t)

Next, we consider the impulsive integral system (2.5)-(2.6). It is equivalent to the system

A(t) a(to)_
r
] t,?(,)a" +
o

[gl(k,Y(tk),Y’(tk))- tkg2(tk, Y(tk),Y’(tk))]
(to,

(2.7)

B(to) + t’j t(s)ds + Z g2(tk’Y(tk)’Yt(tk))
tO t e (tO, t)

From (2.1), (2.3) d the by,theses th v(s) s- a(,) + n(,)l we get

(2.8)

and

{l(s,y(s),y’(s))l < Al(S) ly(s) + A2(s) ly’(s)

< SAl(S) s 1a(s) + B(s) + A2(s) B(s) < (SAl(S) + A2(s))v(s)

gl(tk, Y(tk),y’(tk)) < 71(tk){ A(tk) + tkB(tk) + B(tk) < tkTl(tk)v(tk),

2(t,y(tk),y’(tk) <

Now, tom (9..7) d (9..9) w obta to >_ t0
Ia(t) Ia(to) [-< +

J
l(s)ld,+ ’t0 < tk <

to
< to-- A(t0) + / t(sxl(, + X(s))v(s)as + tO < t < t[’l(tk + tk72(tk)]V(tk

o
Similarly, from (2.8) and (2.9) we get

< IB(t0)I +/t(SAl(S)+A2(s))v(s)ds+ tkV2(tk)V(tk)"

Adding (2.0) to (2.1) we get to (t’t)

o (to, t)
where A(s) SAl(S + A2(s), 7(8) 872(8) + 71(8). From Lemma i, we obtain

v(t) <_ v(to) lI (to, t)(1 + 27(tk))" ezp(2f tA(8)ds)(t > to).
o

Since a e LI,- e tl(V we get that v is bounded and hence both t- 1A(t),B(t) are also bounded.

From (2.9) we get that l(s,y(8),I/(s)) Ll([a, oo)) and #l(tley(tl),y’(tk)),g2(tley(tl),y’(tk) e tl" Then,
from (2.8), B converges, i.e.,

and by (2.8)
B(t)=2+O(A(t))

where

(t, oo)
On the other hand, the functions of

(2.9)

(2.11)
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I’(s) lds and (t-tk)
Ii(tt) l(i 1,2)

o (to, t)

are increasing and bounded since EL1;i(tk) E.l(i=l,2). Then they converge as

Therefore the functions
(t-s) (t-tk)(s) ds and i(tk) (i 1,2)

O (t0, t)

converge as t-.. So, by (2.7) and (2.8), we get

A(t) A(O) It (t s) (s)ds+ B(t)=--+ B(to)+
o

(t-
+ -(to, t)tl(tk)+ (to, ttk)?t2(tk

Then t-1A(t)+ B(t) converges at t--,oo and hence t-1A(t) converges also, i.e.,

A(t) (1 + o(1))t.

PROOF OF THEOREMS 2 AND 3. From the proof of Theorem 1, we get that

ly(t) 1A(t) + B(t) and ’ B converge as t--,oo. Furthermore

lira lira y’(t) (2.12)
t--,oo

Let y’(t0) 1 # 0. Then there exists T large enough so that

oo
+ 2(tk) < Yll IB(t0)T

(s)ds

Thus (2.8) implies that limt__,oo B(t) timt__,oo y(t) 0 and Theorem 2 follows from (2.12).
Finally, Theorem 3 follows at once from

+ (t,oo)2(tk))

< s(s)ds+ ’(t, oo)tk2(tk)O as

because of condition (I’) implies s[f(s)e L and tk2(tk)et1. In this case, by (2.7) A itself

converges as t and in the same way as it was proved previously we can demonstrate that

there exist A so that A(oo) # 0, i.e., in formula (1.6), 1 can be taken nonzero in this case.
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