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ABSTRACT. It is shown that there exist a (r-weakly closed operator algebra/i, generated by

finite rank operators and a a-weakly closed operator algebra/ generated by compact operators
such that the Fubini product F/ contains properly /.

KEY WORDS AND PHRASES. The slice map problem.
1991 AMS SUBJECT CLASSIFICATION CODE. 46K50, 46L05.

1. INTRODUCTION.
In [6] Kraus initiated the slice map problem for a-weakly closed operator spaces. By an

operator space we mean a norm closed linear subspace of L(H), the operators of a Hilbert space
H. As stated in the introduction of [9], the slice map problem is of interest because a number
of questions concerning tensor products of a-weakly closed operator spaces are special cases of

the slice map problem [4-9].
A a-weakly closed operator space A is said to have Property 5’ if AFB AB for

any q-weakly closed subspace B [6]. Kraus [9] first gave (r-weakly closed operator spaces not

having Property S. Effros et al.[3] also characterized (r-weakly closed operator spaces having
Property Sa. One of useful theorems [7, Theorem 2.1] for the slice map problem says that a

(r-weakly closed unital operator algebra generated by finite rank operators has Property S (cf.
[10]). In this paper, we show that the condition "unital" is essential in the theorem.
2. MAIN RESULT.

For operator spaces A and B, let A(B denote the norm closed linear span of {a(R)b a 6_ A
and b 6_ B}. If A and B are (r-weakly closed, let AB denote the (r-weakly closed linear span
of {a(R)b: a 6_ A and b 6_ B}.

Let X and Y be yon Neumann algebras. For g 6_ X., the predual of X, the right slice map
R9 associated with g is a unique bounded linear map from X6Y to Y such that Rg(z (R) y) =<
z,g > y. For h 6_ Y., the left slice map Lh from XY to X is a unique bounded linear map
such that Lh(z (R) y) =< y, h > z. Let A and B be (r-weakly closed linear subspaces of X and
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)", respectively. We define the Fubini product A(FB of A and B by A(gFB {z
_
X(Y

Rg(z) E B, Ln(x)
_
A for every 9 X.,h c= Y.}. The space AFB does not depend on XY

[6, Remark 1.2].
Let A be a C*-algebra. If we assume that A acts universally on a Hilbert space H, the

second dual A** of A can be identified with the a-weak closure B of A in L(H). In this case,

the weak* topology on A** coincides with the (r-weak topology on B.

The following example shows that the condition "containing the identity" is necessary in

Theorem 2.1 of [7].

EXAMPLE. There exist a (r-weakly closed operator algebra generated by finite rank

operators on a Hilbert space H and a (r-weakly closed operator algebra/} generated by compact

operators on H such that F/} contains properly i,b.

PROOF. Let co denote the C*-algebra of all complex sequences that converge to zero.

Oavie [1] constructed a closed linear subspace A0 of co satisfying the following properties: (1)
A0 does not have the approximation property in the sense of Grothendieck; (2) A0 contains a

dense linear subspace A1 with the norm topology such that each element has finite support,

where each element of co is identified with a function whose domain is the set of all positive

integers.

Since c* is *-isomorphic to g, the yon Neumann algebra of all bounded sequences, we

assume that c* acts on the Hilbert space g2 in the usual way. Let A denote the (r-weak closure

of A0 in c*. For a closed linear subspace Do of co, let D denote the (r-weak closure of Do in

c*. We note that (c0+c0)** c*c* and AFD C_ c*c*. Put F(Ao, Do, coeo) {z
_

c0c0 ng(z) c= Do, Lh(z)
_
Ao for every g

_
c$,h E c$}.

By the same argument in the proof of [9, Theorem 5.8] (with a C*-algebra A replaced by an

operator space A), we can choose a closed linear subspace Bo of co such that F(Ao, Bo, co’co)
contains properly Ao(Bo. Let B be the (r-weak closure of Bo in c$*. Since A f’l co A0 and

B fqco B0, we have F(Ao, Bo, Co’co) :3 (A (R)F B)f’l(coco). The opposite inclusion is trivial.

It follows that F(Ao, So, coco)= (AFB)fq(coco). Since AB is identified with the weak*

closure of AoBo in (c0c0)**, we have (AB)gl (co(co) AoBo. Hence AFB contains

properly A)B.

{(0 a) } {(0 b).b_B) SinceA,Let H /2g. Put
0 0

"aeA and / 0’ 0
consists of finite rank operators on g, it is easy to see that , is a (r-weakly closed operator

algebra generated by finite rank operators on H. Since co consists of compact operators on g2,
/ is a (r-weakly closed operator algebra generated by compact operators on H. Then

and

F["
0 0

(R)
0 0

(R)a" a e AFB

0 0
(R)

0 0
(R) a’a C= AB

Hence F/ contains properly /. This completes the proof.

Let K be the C*-algebra of all compact operators on a separable infinite dimensional

Hilbert space. An operator space A is said to have the operator approximation property if



SLICE P THEOREM 403

there exists a net { of finite rank linear maps from A to itself such that (R) idh(z) z in

norm for every z E A(K [2].
Using techniques in the proof of Example, we restate Theorem 5.5 of [9] in a slightly

diff,.rent form.

PROPOSITION. Let A0 be a closed linear subspace of a C*-algebra D and let A be the

weak* closure of A0 in D**.

Then the following statements are equivalent:

(1) A0 has the operator approximation property;

(2) Ao()Bo (A (R)F B) N (/))/x’) for an)’ closed linear subspace Bo of K.

PROOF. We may assmue that D and K act in their universal representations. We note

that D(K C_ D**(K** (DK)**. Let B0 be a closed linear subspace of K and let B be

the weak* closure of B0 in K**. Put F(Ao, Bo, DK) {z e D)h" R(z) cc Bo, Ln(z) c= Ao
for every 9 D*, h K*}. Since A t D A0 and B t3 K B0, we have F(A0, B0, D(K) D_

(A (R)F B) (D)/’). The opposite inclusion is trivial. It follows that F(Ao, Bo, D(K)
(A (R)F B)[ (D()I’). Then (2) holds if and only if F(Ao, Bo, Dh’) AoBo for any closed

subspace B0 of K. Hence the same argument in the proof of [9, Theorem 5.5] (with a C*-algebra
A replaced by an operator space A) implies that (1) and (2) are equivalent.
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