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ABSTRACT. The problem of fully developed steady viscous incompressible flow in a helical

pipe is studied. The predicted analytical expression in the literature for the flow rate is

improved. The present result shows a reduction in the flow rate with increasing torsion, for a

given curvature. Qualitatively this effect of torsion is seen to cause equivelocity contours in the
normal section of the pipe, to undergo shear.
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1. INTRODUCTION.
Fluid transportation in helical pipes and spiral coils occurs in many industrial operations

involving heat exchangers, chemical reactors etc., and is particularly useful in viscometry or

convective heat transfer. Both the earlier experimental investigations of Eustice [1] and the
theoretical works of Dean ([2], [3]) have shown a remarkable feature that in a toroidal pipe flow,
a fluid particle undergoes a skewed helical motion. Expression for the volumetric flow rate,
showing the effect of curvature was later obtained by Topakoglu [4].

Besides curvature (), torsion (r)is another significant parameter which can control the flow
in a helical pipe. Assuming that xa e << 1, ra << 1, 0(1), where a is the radius of the
circular cross-section of the pipe and using a non-orthogonal curvilinear coordinate system, Wang
[5] studied the problem and observed that torsion did not affect the flow rate to the 0(e2)
considered. His observation of secondary flows, showing asymmetrical recirculating cells which
tend to coalesce, thereby reflecting the importance of torsion on the flow, was also not correct, as

pointed out by Germano [6].
In the present paper, an attempt is therefore made to bring out the said effect of torsion in a

helical pipe flow, assuming the pipe to be nearly straight (the twist of the pipe dominating the

bend). The analysis is pursued on similar lines to that of Wang, in terms of the parameter 6,
characterizing the helical angle.
2. ANALYSIS.

Transport of viscous incompressible fluid, caused due to pressure drop along a helical pipe is

considered. The Reynolds number Re characterizing the flow is

R Ua/v, (2.1)

where the velocity scale U is defined in terms of mean pressure gradient P as

U (a2/4) P. (2.2)

Germano’s orthogonal coordinate system (s’,r’,O + (s’)+ r/2), Fig. 1, is adopted to describe the

mathematical formulation of the problem, with being defined as
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(,’) [ (,’),’, (2.3)

where r(st) measures the torsion of the pipe at PI" The corresponding governing equations in

dimensionless form are given in detail by Germano [6]. The boundary conditions are the usual

no-slip conditions on the body.
The tangent of the helical angle at P1 of the central generic curve is related to the

curvature x and torsion r as

tan5 xa . (2.4)

Both a and are assumed to be small (a, < 1) but relatively a is larger than . Such a

configuration naturally restricts < unlike that of Wang, so that the twisted pipe considered is

nearly straight.
The flow field can now be sought in the form

u(r,a)= Juj(r,)
3=0

v(r,a) , gJ vj(r,a) (2.5)

w(r,a) y ,J wj(r,a)
1=1

p(s, r, a) po(S) + J pj(r, a)
3=1

where a 8 + .
The primary flow of O() is the well-known Poiseuille flow, viz.,

uo(r 1 r2.
and po(s) -e s.

The first order terms of O() are solvable from

Ou1 duo dpo i)P1a Uo -- + v1 a r sin a --- + a Oa

[(r ) (Oul Ovl+ -e + ,"- + "-0- + a u sin a

OWl

OvI OP
a Uo + a Uo2 sin a= Or

(OWl w 10Vl)r Oa

a \--- + a -- + a uo sin (2.9)
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OWl 10Pla Uo--+ a Uo
2 cos a r Oa

[ (OWlRe \---+ r

+ a -O + a -O- + a Uo cos a (210)

Ou Ov v Ow
and -a --0---+-0--+---+1 Oa =0. (2.11)

The corresponding solutions obtained exactly up to O(a3) are given below:

Ul(r,a cos (a2 Ull + sin (a u12 -4- a3 u13)
Vl(r, cos (a2 Vll) + sin (a v12 + a3 v13)
wl(r,a cos a (a Wll +a

3
w12 +sin a (a2 w13

Pl(V,) cos a (a2 (a P12 P13P11) + sin a + a3 ),

where (Re r(l r2)(29 + 5r2 3r4)Ull 96

(Re r(l r2)(2969 4381r2 + 3249r4 1301r6 + 274r8 20rI0)/ 134400

(Re/6)2
u12= -r(1-r2)+ 320" r(1-r2)(19 -21r2+9r4-r6)

13 9- r(1 r2)(6 5r2) (Re/6)2 r(1 r2)(774- 658r2 +u 7680

(Re/6)4 r(1- r2)(697301 1162699r2 ++ 190r4 + 25r6 8r8) 120422400

(2.12)

(2.13)

(2.14)

+ 1065233r4 610567r6 + 232037r8 56083r10 + 7757r12 415r14)

(Re/6)2 r2)2 r6)Vll=(l-r2)2+ 1920 (i- (13-15r2+7r4-

(Re/6.__)) r2)22= 4s (1- (-3)

(Re/6) r2)2v13 3840 (1 (189 + 46r2 17r4)

(Re/6)3 (1 r2)2 (11264 + 1647r2-6990r4 +4463r6 1234r8 + 125r10) (2.18)+ 15052800

(Re/6)w 4s ( )(4- + z4) (.)

(R/6) ( z)(S +2 zoz4 +6)w12 3840

(Re/6)3 (1 r2)(11264 + 281149r2 537151r4 + 458039r6 205911r8+ 15052800

(2.15)

(2.16)

+ 48105rl0 4115r12) (2.20)
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Wl3 l (I -r2)(r2-2)-(Re/6)2
1920 ,.2)( 13 224r2 / 266r4

124r6 + 17r8) (2.21)

r (Re/6)
Pll= (3r2-1)+ 2880 (101-120r2+90r4-30,"6+3r8) (2.22)

P12 ]’ (9- 6r2 + 2r4)

(Re/6)2
r(2027- 5460r2 +r (281 255r2 + 110r4 25r6) 1612800P13 1440

(2.23)

where

+ 5740r4- 3500r6 + 1260r8- 252r10 + 20r12). (2.24)

It may be noted that Dean’s solutions for a toroidal pipe flow form part of the present solution,

and are given by terms of order a in (2.12). Among the second order terms of O(i2), only the

aperiodic term u20 of the main flow is of interest of us. The detailed equations are too lengthy to

be given here.

If we agree to compute the flow rate up to o(mo’n)m + n < 6’ the available solutions (2.6),
(2.7), (2.12) are sufficient to calculate u20 up to O(r4). The corr-sponding solution is

u20 r2u20(1)+ r4u20(2)+ O((r6), (2.25)

u20(1) (1 r2) [3- (- 3 + 11r2) (Re/6)2
6400 (148 + 43r2 132r4 + 68r6 7r8)

2867200(Re/6)4 (1 r2)2 (4119 8923r2 + 7214r4 + 2910r6 + 535r8 35r10)] (2.26)

u20(2) (1 -,.2) (49- 83r2 + 58r4) -(Re/6)2 (82519- 148421r21843200

+ 106789r4 25571r6 5846,-8+ 1810,-10) (Re/6)4
260112384000 (145186409

-214038061r2 + 282540539r4- 353746861r6 + 313442039r8- 175655185r10

60068135 r12- 11194585r14 + 713090r16)

(Re/6)6(l r2)3
38149816320000 (3068498717 4237343932r2 / 3407539940r4

1828254380 r6 + 675698470r8- 170804372 r10 + 27992412r12

2606580r14 + 96525,’16)1 (2.27)

3. FLOW RATE.
The volume rate of discharge of the fluid through the circular cross-section of the pipe is

given in terms of dimensionless variables as

2r
q -I I urdrda" (3.1)
Ua2-o o

Dropping the periodic terms which do not contribute to the integral, the above expression (3.1)
simplifies, to

q Q I[uo(r)+ 62{r2 u20(1) + r4 u20(2)}]r dr. (3.2)
2rUa2 o
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The integral (3.2) is evaluated exactly using (2.6), (2.26), (2.27) to give

where

2a2 11 (Re/6)2 1] 62a4Q-Q 1- [6177010 (Re/6)4+ + .f Re (3.3)

12483167 (Re/6)6 1189733 (Re/6)4 8397 (Re/6)2 + 31f(Re) 9934848000 6451 2000 (3.4)

and QS is the corresponding flow rate in a straight tube.

4. DISCUSSION.
The analytical expression (3.3) shows the combined effect of ti and a on the flow rate. If we

write the expression in terms of e, the last terms of O(e2a2) marked by an asterisk can be looked

upon as a simple addition (due to torsion) to Wang’s [5] result, when 1/6 0(1).
We now look at the quantitative effect of torsion compared with that of curvature on the

flow rate. Table 1 gives a comparative statement of the existing flow rate Qw, Wang [5] and the

present improvement Q for a selected value of 6 =0.2 (the corresponding helical angle is

/3 11.31). The numerical values of Qw show that for small e, when Re < 6 (more precisely

5.67) the flow rate in a curved pipe is larger than that of a straight pipe, as remarked earlier by

Wang. Such an observation can be made in the present case also as the value of Re approaches 5

or 6. Comparatively Q > Qw > when Re < 5. This inequality is observed true for different

6 < 1 (the detailed numerical data is not supplied). For Re > 5.67,Q < Qw < 1. However, the

range of validity of the expression (3.3) for the flow rate, cannot be indefinitely extended to much

larger values of Re. This can be seen more clearly from the following discussion.

Table 2 gives the flow rates for a given Reynolds number Re 17 and e 0.1, 0.2 and 0.5.

The flow rates decrease with increasing a (torsion) for a given curvature. This decrease is more

pronounced with increasing values of curvature. Similar computations given in Table 3 show an

increase in the flow rates with increasing a, for some values of the Reynolds number

(e 0.1, Re 53.76 and 0.2, Re 38.01). This appears physically inconsistent*’. This is

because the values of the Reynolds number in these cases have been chosen as Re 17/VQ, an

optimum value suggested by Wang for the validity of his flow rate. This only shows that

Re 17/v/e cannot be taken as an upper bound in the present case also, since it involves an

additional term of O(e2a2) which seems to diminish the value of the upper bound.

Since the secondary flow cannot be described by a stream function in the present case, the

deviation of stream lines compared to toroidal pipe flow cannot be studied, to interpret the effect

of torsion on the flow. Instead, the displacement of equivelocity contours is studied. While the
study of stream lines will help us in picturing the flow structure, the equivelocity contours will

help us to fix the spatial positions of characteristic particles (particles having the same velocity)
which are displaced from their original configurations. This displacement should be therefore due
to the inherent property of the torsion causing a rigid body-like twist to the fluid particles. To
illustrate this feature, equivelocity profiles in (r,c) plane of Wang (corrected to correlate with

physical covariant description) and their respective deviations in the present case axe projected in

Figure 2, for selected values of 6 0.2, a 0.25, Re. 6 and 38. The resultant secondary velocity

v2+ w2,,m 61v12 + w12 is computed both for its magnitude and direction, using the analytical
expression (2.12), with r and o ranging from 0.05 to 0.95 and O to 2r respectively. The

corresponding equivelocity contours are then sketched. The numerical data is too voluminous to

be presented here. Figures (2a, b) show how equivelocity profiles of Wang get sheared and
accelerated. With increase in Re, relatively stagnant profiles of Wang tend to reach the wall.
The resistance of the wall coupled with increased flow (due to increase of pressure gradient)
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surges the shearing, reversing its orientation. Figures (2c, d) reflect this phenomena. The said

shearing of cquivelocity profiles of Wang signifies the torsional effect on the helical pipe flow,

which is otherwise reflected in the volume flow rate.

Re

Table 1. Flow rate in a helical pipe
E/o 0.2

0.05 o 0.25 0.i 0.5 0.2 o 1.0

Qw Q Ow Q 0 0

1.00005054 1.00005257 1.00020194 1.00023377 1.00080788 1.00131714

1.00004566 1.00004733 1.00018287 1.00020921 1.00073123 1.00115359

1.00003767 1.00003874 1.00015080 1.00016809 1.00060296 1.00087988

4 1.00002635 1.00002658 1.00010550 1.00011003 1.00042212 1.00049460

5 1.00002168 1.00001097 1.00004685 1.00003481 1.00018752 0.99999553

6 0.99999362 0.99999160 0.99997437 0.99994200 0.99989754 0.99938011

7 0.99997187 0.99996835 0.99988759 0.99983102 0.99955022 0.99864525

8 0.99994648 0.99994117 0.99978584 0.99970108 0.99914330 0.99778759

9 0.99991715 0.99990982 0.99966854 0.99955165 0.99867409 0.99680352

10 0.99988371 0.99987411 0.99953490 0.99938178 0.99813956 0.99568915

15 0.99964738 0.99962270 0.99858940 0.99819475 0.99435771 0.98804513

20 0.99926805 0.99922317 0.99707222 0.99635392 0.98828894 0.97679621

25 0.99869746 0.99863225 0.99478978 0.99374646 0.97915918 0.96246636

30 0.99787331 0.99780011 0.99149328 0.99032211 0.96597314 0.94723445

Table 2. Effect of torsion on flow rate Re=17

’ Qw a O
Q Qw

x i00

0.I

Qw O. 99806076

0.2

Qw O. 99224299

0.5

Qw O. 95151883

0.i
0.4
0.6
0.75
1.0

0.2
0.4
0.6
0.75
1.0

0.5
0.65
0.75
0.9
1.0

0.99804008
0.99772996
0.99731648
0.99689782
0.99599332

0.99191219
0.99091983
0.98926586
0.98759121
0.98397321

0.93859726
0.92968142
0.92244536
0.90965301
0.89983261

0.00
-0.03
-0.07
-0.12
-0.21

-0.03
-0.13
-O.30
-0.47
-0.84

-1.38
-2.35
-3.15
-4.60
-5.74
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Table 3. Effect of Torsion on Flow Rates Re 17/J,

Qw Q
Q

x I00

0.I 0.95192224 0.09
0.i 0.4 0.96540785 1.49

(Re 53.76) 0.6 0.98338860 3.29

Qw 0.95102322 0.75 1.00159419 5.05
1.0 1.04092705 8.64

0.2 0.93331909 0.007
0.2 0.4 0.93352252 0 03

(Re 38.01) 0.6 0.93386155 0 065
Qw 0.93325126 0.75 0.93420488 0 1

1.0 0.93494660 0 18

0.5 0.85773468 -2.88
0.5 0.65 0.84069133 -4.97

(Re 24.04) 0.75 0.82685900 -6.72
Qw 0.88243526 0.9 0.80240548 -9.97

1.0 0.78363305 -12.61

.y
0

FIG. 1. Germano’s coordinate system.
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WANG
PRESENT RESULT

el b)

c)

FIG. 2 EQUIVELOCITY CONTOURS IN (r,O,) PLANE 8 0.2,
Re=6 a) tfvow 0.0015 b) Vvo$ =0.0026

Re=38: c) /v.w =0.007 .d) Vv*w=0.016

d)

o- 0 25,
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