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ABSTRACT. In this paper, we introduce weighted graph bundles and study their characteristic

polynomial. In particular, we show that the characteristic polynomial of a weighted K2 (K2)-
bundles over a weighted graph F can be expressed as a product of characteristic polynomials two

weighted graphs whose underlying graphs are F As an application, we compute the signature of a

link whose corresponding weighted graph is a double covering of that of a given link.
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1. INTRODUCTION.
Let F be a simple graph with vertex set V(F) and edge set E(F). Let R be the field of real

numbers. A weighted graph is a pair F (r, w), where F is a graph and w: V(F)U E(F)-,R is a

function. We call F the underlying graph of F, and w the weight funotion of F. In particular, if

w(E(r)) c {1, 1} and w(y(r))= {0}, then we call F a signed graph.

Let V(F)= {ul,...,u,}. The adjacency matrix of r is an n x n matrix A(r)= (%)
defined as follows:

for l<i,j<n.

w(e) if e u,u, e E(F) and # j,

w(u,) if i= j,

0 otherwise,

Note that if the weight function 2. of F is defined by (e) -1 for e E(F) and

2-(u) deg(u) for u V(F), where deg(u) denotes the degree of u, that is, the number of edges

incident to u, then the weighted adjacency matrix A(F) is called the Laplacian matrix of F. We

call 2- the Laplacian function of F. The number of spanning trees of a connected graph F is the

The characteristic polynomial P(r;)= IAI-A(r)l of the adjacency matrix A(r)is
called the characteristic polynomial of the weighted graph r,. A root of P(I’,;A) is called an

eigenvalue of
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A runs thro,,gh all non-ze, o eig(’nval,ws of .4(Ft) Mor(,ov(’,, tl,(’ eigenvalues of A(F)
used to calc,llate the radius of gyration of a Gaussian molecuh,. For more applicati(ns of the

eigenvalues of A(F), the reader is suggested to refer [5].
2. WEIGHTED GRAPH BUNDLES.

First, we introduce a weighted graph b,m(lle. Every edge of a graph F gives rise to a pail

oppositely directed edges. We denote the set of directed edgeb of F bv D(F). By e-’ we m,’an

the reverse edge to an edge D(F). For any finite group G. a G-voltage ass,gnmen of F i a

function 6:D(r)a ,,h that 8(e -) =(, )- for all e D(F). we denote the set of all G-

voltage assignments of F by C(F;G). Let .k be another graph and let C(F;AuI(A)). wh(’re

Aut(A) is the group of all graph automophislns of A. Now, we construct a graph FxA as

follows" v(rx*A)-V(r)xV(A). Two vertices (Ul,L’I)and (u2, v2)are adjacent in

either u,u2 D(F) and ,,2 (UlU2)t, or it It and v,,2 E(A). We call F xA the A-bundle

over F associated w’th and the natural map p*: F x AF the bundle projectwn. We also call F
and A the base and the fibre of Fx*A, respectively. Note that the map p maps vertices to

vertices but an image of an edge can be either an edge or a vertex. If A is the complement K,, of

the complete graph K, of n vertices, then every A-bundle over F is an n-fold covering graph of F
Let F and A, be two weighted graphs and let C’(F;Aut(A)). We define the product of

and w wzth respect to ,w x 0, as follows"

(1) For each vertex (u,v) of V(Fx*A),(wx*p)(u,v)=w(u)+p(v).
(2) For each edge e (u, v)(u, v) of E(F x *A),

( x )(e)
w(uu) if uu2 e D(F) and v2 &(uu)v,

(t’,t,2) if u- u and v,v e E(F).

We call the weighted graph (FxeA)%
we call it a weighted graph bundle.

the Au-bundle over F, assoczated wth . Briefly,

FIGURE 1. The graphs C4xeK2 and

3. CHARACTERISTIC POLYNOMIALS.
In this section, we give a computation for the characteristic polynomial of a weighted graph

bundle F x CA, where A is either complete graph K of two vertices or its complement K2, and

study their related topics. Note that Aut(K)= Aut(K)= Z.
For a given graph F with weight function w and for a E C1(F;Z), we define a new weight

function w on F as follows:
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For c E(F),

if O(e)=
";*(e)

(c) if O(e)=

(2) For v E V(F), ,e’(t,)= w(v).

A subgraph of F is called an elementary conflguratwn if its components are either conplete

graph K or K2 or a cycle C,,(m > 3). We denote by E, the set of all elementary configurations

of F having k vertices. In [3], the characteristic polynomial of a weighted graph F is giw’n as

follows:

where

P(r;x)
k--O

a(F)= , (-1)ls)21c(s)l II w(u) II w(e) II co(e).
S E u I,(s) e e I(S) e C(S)

In the above equation, symbols have the following meaning: :(S) is the number of components
of S, C(S) the set of all cycles, C,,(m >_ 3), in S, and I,(S)(I(S))is the set of all isolated

vertices (edges) in S. Moreover, the product over empty index set is defined to be 1.

For a fixed voltage assignment C(F;Z), we denote by E_ the set of edges of F such

that (e)= -1, i.e., Eo_ {e E(r):(e) -1}. Let F(Ee_) be the edge subgraph of r
induced by E,_ having weight zero in vertices. If F is a weighted graph, then the weight

function of its subgraph S is the restriction of w on S.
THEOREM 1. Let Ku be a constant weighted graph, say t(v)= c for v K . Then, for

each ( Cl(F; Z:), we have

P((r x --)**;) P(r.; c)P(r; c).

PROOF. Let A(F) be the adjacency matrix of F and let A(F) the adjacency matrix of

F. Then we have

a(r) A((r\(z_,))) + A(F(E_,)),

A(r) A((r\(E_ )))- A(r(E,_ )).

Let V(F ’2)= {(u,l),-- .,(u,,, 1),(u, 1),.-.,(u,, 1)}. If is not difficult to show that

A((r i),) A(r)-A(r(E_,))+ ...
0 c

Let M be a regular matrix of order 2 satisfying

M-l[ ] M-[ --00 11"
Put

X A(F)- A(F(E_ ))+ c

0

Y=A(F(E_I)).
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Then

[c o 1A(r) + c

0 c

[c o 1A(F) + c

0 c

Since 1(I (R) M-’) (I(R) M) and

I[- () )11-I[I-I ’-’) ()o)I (R) ’)]1,
we have our theorem. VI

THEOREM 2. Let K (K2,#) be a weighted graph having constant weight on vertices

Then, for each b E C(F; Z), we have

.)= P(r;--)P(r;A-+c),P((F x *K) %,

where c #(v,)= #(v) for the vertices v,,v and c #(e) for the edge e in K.
PROOF. Clearly, we have

A((rxeK2),o%)= A(F.,)-A(F(E._,).,)+ %... (R)

where c t(Vl)= (V2) and e--"/1() for the edge e in K2. Let M be a regular matrix of order 2

satisfying

Then

(I (R) M -1) A ((r X 4I2)w bt (I (R) M)

0 ]X+Y+ c. 0
".

0 c

o x-Y+
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o A(r) + Z

where X and Y are the same matrices as in the proof of Theorem and for, 1,2,

IceCv+(--1 )’ 0

% + (-- 1)’-cc

0 %+(-1)’-1%

Using method similar to the proof of Theorem 1, we have our theorem. El

Note that for any CI(F;Aut(A)), the Laplacian function of F xA is the product of

Laplacian functions of F and A with respect to . Clearly, the Laplacian function of the K, is

the zero function; and the Laplacian function of the K has value and -1 for each of its

vertices and its edge, respectively. We shall denote the Laplacian function of a graph by if it

makes no confusion. Then Theorem and Theorem 2 give the following corollary.

COROLLARY 1. For any C(F; Z),
(1) p(r;)P(r,;).
(2) P((rxg),;)= P(rt;)P(rt,;-2). 0

Now, we consider another invariant of weighted graphs called the signature. Since A(F,) is

symmetric, A(F) can be diagonalized through congruence over R. Let d + denote the number of

positive diagonal entries, and d_ the number of negative diagonal entries. The signature of a

weighted graph (F) is defined by a(A(r)) d + -d_ and is denoted by a(F). It is an invariant

for weighted 2-isomorphic graphs (see [7]).
From now on, we will consider the weight function on K as zero function and the weight

function p on K2 as the map defined by p(v)= 0 for each v V(K) and it(e)= ce for the edge e

of K2. Then we can compute the signature of a double covering of F.
COROLLARY 2. a((F ),0)= a(F)+ a(F,)for C’(F;Z). 0

For convenience, we adapt the following notations. For a real number c, a weighted graph

r, and an eigenvalue of F,,
P(c) { < 0: $ + c > 0},

P(c),+ { > 0: + c > 0},

z(). { # 0: + 0},

g(c) { < 0: + c < 0},

N(c)+ { > 0: + c < 0}.

We Mso denote the multiplicity of by me(A).
By using the above notations d Threm 2, we get the signature of a K-bundle over F.
COROLLARY 3. For CI(F; Z),
(1) ifc0, then

a((F x Cg) x%) +

-(2 e (_ %,:,m,($)+ m(O)+ Ae
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(2) ifc<O, then

(tr ct %) trt +

MARK. Though the results in this section stated only for a simple graph, it remains true

for any graph.
4. APPLICATIONS TO LINKS.

In a signed graph F, an edge e of F is said to be positive if (e) and negative otherwise.

For a signed graph F, we define a new weight function of F by (e)= (e) for any edge
e F and (u,) )’= ,, C a,s, where a, is the number of positive edges minus the number

of negative edges which have two end vertices u, and us. Given a knot or link L in , we

project it into R so that each crossing point h proper double crossing. The image of L is called

a link (or knot) diagram of L, and we do not distinguish betwn a diagram and the image of L.
We may sume without loss of generality that a link diagram of L intersects itself

transversely and h only finitely many crossings. The link diagram divides R into finitely

many domains, which will be clsified shaded or unshaded. No two shaded or unshaded

domains have an edge in common. We now construct a signed plan graph F from L
follows: take a point v, from each unshaded domn D,. These points form the set of vertices

V(F) of F. If the boundies of D, and D intersect k-times, say, crossing at ct, c,..-,ct,
then we form multiple edges eg,e, .,egt on R with common end vertices v, and v, where

each edge et pses through a crossing c, for m 1,2,-..,k. To define the weight of

edge, first, we define the index (c) to each crossing c of the link diagr in Figure 2. To each

edge of F pses through exactly one crossing, say c, of L, the weight (e) will be defined

(), (c). (Si 3).

e()-- 1 () -I

FIGURE 2. The index e(c).
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FIGURE 3. The correspondence between and r,( ).
The resulting signed planar is called the 9raph of a link with respect to L and is denoted by

r( ). he sined planar graph r( aepends not only on g but also on shaain. Conversely,
given a signed planar graph 1"0, one can construct uniquely the link diagram L( 0) of a link so

that r((r 0//; to.

,,c) = -|

FIGURE 4. The index w(c).
Suppose that we are given an oriented link L. The orientation of L induces the orientation

of a diagram . We then define the second index w(c), called the twist or writhe at each

crossing c as show in Figure 4. We now need the third index r/p(c) at crossing c. Let L be an

oriented diagram and p shading on . Let rp(c)= w(c)6,(c){c), where 6 denotes Kronecker’s

delta. We define r( )= r(c), where the summation runs over all crossing in . The index

r/p( depends not only on the shading p but also on the orientation of . The following Lemma

can be found in ([7], [4]).
LEMMA 1. The signature a(L) of a link L is a(L) a(P(L ))- r(L ). El

Let and be link diagrams of L1 and L2, respectively. The link L is called a double

covering of the link n if F( 2) is a double covering of P( 1) as weighted graphs and it can be

extended to a branched covering on R2. Let be a voltage assignment in C(F( );Z2) such

that (e)= -1 for some edge e and (e)= otherwise, then F( )x4- is a planar double

covering of F( of which the corresponding link is a double covering of L.

herefor, one can construct the double covering link diagram L (F,(Z)x4-)of,,,
Moreover, we can give an orientation on (P()x -)so that the covering map from L to

(P()x 4-) preserves the orientation. We have ( (F()x e--))= 2rp( (see Figure

5).
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n(i,). _=

FIGURE/5. Covering graph and covering link.

Therefore, by using Lemma and Corollary 2, we get the following theorem.
THEOREM 3. For any oriented link diagram ,

(7 (r(7) )) o(r(7 )) + (r(7 ))- .v(7
foh c’(r;)h ht () fo soma r(Z a +() otherwise.
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