CHARACTERISTIC POLYNOMIALS OF SOME WEIGHTED GRAPH BUNDLES AND ITS APPLICATION TO LINKS

MOO YOUNG SOHN

Department of Mathematics Changwon University Changwon 641-773, Korea

and

JAEUN LEE

Department of Mathematics Kyungpook National University Taegu 702-701, Korea

(Received February 20, 1992)

ABSTRACT. In this paper, we introduce weighted graph bundles and study their characteristic polynomial. In particular, we show that the characteristic polynomial of a weighted K_2 (\overline{K}_2)-bundles over a weighted graph Γ_{ω} can be expressed as a product of characteristic polynomials two weighted graphs whose underlying graphs are Γ As an application, we compute the signature of a link whose corresponding weighted graph is a double covering of that of a given link.

KEY WORDS AND PHRASES. Graphs, weighted graphs, graph bundles, characteristic polynomials, links, signature.

1991 AMS SUBJECT CLASSIFICATION CODES. 05C10, 05C50, 57M25.

1. INTRODUCTION.

Let Γ be a simple graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. Let \mathbf{R} be the field of real numbers. A weighted graph is a pair $\Gamma_{\omega} = (\Gamma, \omega)$, where Γ is a graph and $\omega: V(\Gamma) \cup E(\Gamma) \rightarrow \mathbf{R}$ is a function. We call Γ the underlying graph of Γ_{ω} and ω the weight function of Γ_{ω} . In particular, if $\omega(E(\Gamma)) \subset \{1, -1\}$ and $\omega(V(\Gamma)) = \{0\}$, then we call Γ_{ω} a signed graph.

Let $V(\Gamma) = \{u_1, \dots, u_n\}$. The adjacency matrix of Γ_{ω} is an $n \times n$ matrix $A(\Gamma_{\omega}) = (a_{ij})$ defined as follows:

$$a_{ij} = \begin{cases} \omega(e) & \text{ if } e = u_i u_j \in E(\Gamma) \text{ and } i \neq j, \\ \omega(u_i) & \text{ if } i = j, \\ 0 & \text{ otherwise,} \end{cases}$$

for $1 \leq i, j \leq n$.

The characteristic polynomial $P(\Gamma_{\omega};\lambda) = |\lambda I - A(\Gamma_{\omega})|$ of the adjacency matrix $A(\Gamma_{\omega})$ is called the *characteristic polynomial* of the weighted graph Γ_{ω} . A root of $P(\Gamma_{\omega};\lambda)$ is called an *eigenvalue* of Γ_{ω} .

Note that if the weight function \mathcal{L} of Γ is defined by $\mathcal{L}(e) = -1$ for $e \in E(\Gamma)$ and $\mathcal{L}(u) = deg(u)$ for $u \in V(\Gamma)$, where deg(u) denotes the degree of u, that is, the number of edges incident to u, then the weighted adjacency matrix $A(\Gamma_{\mathcal{L}})$ is called the *Laplacian matrix* of Γ . We call \mathcal{L} the *Laplacian function* of Γ . The number of spanning trees of a connected graph Γ is the

value of any cofactor of $A(\Gamma_{\underline{L}})$ [*Matrix tree theorem*] and is equal to the value $\frac{1}{n} \prod_{\lambda \neq 0} \lambda$, where λ runs through all non-zero eigenvalues of $A(\Gamma_{\underline{L}})$ - Moreover, the eigenvalues of $A(\Gamma_{\underline{L}})$ may be used to calculate the radius of gyration of a Gaussian molecule. For more applications of the eigenvalues of $A(\Gamma_{\underline{L}})$, the reader is suggested to refer [5].

2. WEIGHTED GRAPH BUNDLES.

First, we introduce a weighted graph bundle. Every edge of a graph Γ gives rise to a pair of oppositely directed edges. We denote the set of directed edges of Γ by $D(\Gamma)$. By e^{-1} we mean the reverse edge to an edge $\epsilon \in D(\Gamma)$. For any finite group G, a G-voltage assignment of Γ is a function $\phi: D(\Gamma) \rightarrow G$ such that $\phi(e^{-1}) = \phi(\epsilon)^{-1}$ for all $\epsilon \in D(\Gamma)$. We denote the set of all G-voltage assignments of Γ by $C^1(\Gamma;G)$. Let Λ be another graph and let $\phi \in C^1(\Gamma;Aut(\Lambda))$, where $Aut(\Lambda)$ is the group of all graph automorphisms of Λ . Now, we construct a graph $\Gamma \times {}^{\circ}\Lambda$ as follows: $V(\Gamma \times {}^{\circ}\Lambda) = V(\Gamma) \times V(\Lambda)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $\Gamma \times {}^{\circ}\Lambda$ if either $u_1u_2 \in D(\Gamma)$ and $v_2 = \phi(u_1u_2)v_1$ or $u_1 = u_2$ and $v_1v_2 \in E(\Lambda)$. We call $\Gamma \times {}^{\circ}\Lambda$ the Λ -bundle over Γ associated with ϕ and the natural map $p^{\phi}: \Gamma \times {}^{\circ}\Lambda \rightarrow \Gamma$ the bundle projection. We also call Γ and Λ the base and the fibre of $\Gamma \times {}^{\circ}\Lambda$, respectively. Note that the map p^{ϕ} maps vertices to vertices but an image of an edge can be either an edge or a vertex. If Λ is the complement $\overline{K_n}$ of n vertices, then every Λ -bundle over Γ is an n-fold covering graph of Γ

Let Γ_{ω} and Λ_{μ} be two weighted graphs and let $\phi \in C^{1}(\Gamma; Aut(\Lambda))$. We define the product of μ and ω with respect to $\phi, \omega \times {}^{\phi}\mu$, as follows:

- (1) For each vertex (u, v) of $V(\Gamma \times {}^{\phi}\Lambda), (\omega \times {}^{\phi}\mu)(u, v) = \omega(u) + \mu(v).$
- (2) For each edge $e = (u_1, v_1)(u_2, v_2)$ of $E(\Gamma \times {}^{\phi}\Lambda)$,

$$(\omega \times {}^{\phi}\mu)(e) = \begin{cases} \qquad \qquad \omega(u_1u_2) & \text{ if } u_1u_2 \in D(\Gamma) \text{ and } v_2 = \phi(u_1u_2)v_1 \\ \\ & \mu(v_1v_2) & \text{ if } u_1 = u_2 \text{ and } v_1v_2 \in E(\Gamma). \end{cases}$$

We call the weighted graph $(\Gamma \times {}^{\phi}\Lambda)_{\omega \times {}^{\phi}\mu}$ the Λ_{μ} -bundle over Γ_{ω} associated with ϕ . Briefly, we call it a weighted graph bundle.

FIGURE 1. The graphs $C_4 \times {}^{\phi}K_2$ and $(C_4 \times {}^{\phi}K_2)_{\ldots \times {}^{\phi}}$.

3. CHARACTERISTIC POLYNOMIALS.

In this section, we give a computation for the characteristic polynomial of a weighted graph bundle $\Gamma \times {}^{\phi}\Lambda$, where Λ is either complete graph K_2 of two vertices or its complement $\overline{K_2}$, and study their related topics. Note that $Aut(K_2) = Aut(\overline{K_2}) = \mathbb{Z}_2$.

For a given graph Γ with weight function ω and for a $\phi \in C^1(\Gamma; \mathbb{Z}_2)$, we define a new weight function ω^{ϕ} on Γ as follows:

(1) For $\epsilon \in E(\Gamma)$,

$$\omega^{\phi}(\epsilon) = \begin{cases} \omega(\epsilon) & \text{if } \phi(\epsilon) = 1\\ -\omega(\epsilon) & \text{if } \phi(e) = -1 \end{cases}$$

(2) For $v \in V(\Gamma)$, $\omega^{\phi}(v) = w(v)$.

A subgraph of Γ is called an *elementary configuration* if its components are either complete graph K_1 or K_2 or a cycle $C_m (m \ge 3)$. We denote by E_k the set of all elementary configurations of Γ having k vertices. In [3], the characteristic polynomial of a weighted graph Γ_{ω} is given as follows:

$$P(\Gamma_{\omega};\lambda) = \sum_{k=0}^{n} a_{k}(\Gamma_{\omega})\lambda^{n-k},$$

where

$$a_{k}(\Gamma_{\omega}) = \sum_{S \in E_{k}} (-1)^{\kappa(S)} 2^{|C(S)|} \prod_{u \in I_{v}(S)} \omega(u) \prod_{e \in I_{E}(S)} \omega(e)^{2} \prod_{e \in C(S)} \omega(e).$$

In the above equation, symbols have the following meaning: $\kappa(S)$ is the number of components of S, C(S) the set of all cycles, $C_m(m \ge 3)$, in S, and $I_v(S)(I_E(S))$ is the set of all isolated vertices (edges) in S. Moreover, the product over empty index set is defined to be 1.

For a fixed voltage assignment $\phi \in C^1(\Gamma; \mathbb{Z}_2)$, we denote by $E_{\phi-1}$ the set of edges of Γ such that $\phi(e) = -1$, i.e., $E_{\phi-1} = \{e \in E(\Gamma): \phi(e) = -1\}$. Let $\Gamma(E_{\phi-1})$ be the edge subgraph of Γ induced by $E_{\phi-1}$ having weight zero in vertices. If Γ_{ω} is a weighted graph, then the weight function of its subgraph S is the restriction of ω on S.

THEOREM 1. Let $\overline{K_2}$ be a constant weighted graph, say $\mu(v) = c$ for $v \in \overline{K_2}$. Then, for each $\phi \in C^1(\Gamma; \mathbb{Z}_2)$, we have

$$P((\Gamma \times {}^{\phi}\overline{K_2})_{\omega \times {}^{\phi}c}; \lambda) = P(\Gamma_{\omega}; \lambda - c)P(\Gamma_{\omega}\phi; \lambda - c).$$

PROOF. Let $A(\Gamma_{\omega})$ be the adjacency matrix of Γ_{ω} and let $A(\Gamma_{\omega\phi})$ the adjacency matrix of $\Gamma_{\omega\phi}$. Then we have

$$\begin{split} &A(\Gamma_{\omega}) = A\Bigl((\Gamma \backslash (E_{\phi - 1}))_{\omega}\Bigr) + A(\Gamma(E_{\phi - 1})_{\omega}), \\ &A(\Gamma_{\omega\phi}) = A\Bigl((\Gamma \backslash (E_{\phi - 1}))_{\omega}\Bigr) - A(\Gamma(E_{\phi - 1})_{\omega}). \end{split}$$

Let $V(\Gamma \times {}^{\phi}\overline{K}_2) = \{(u_1, 1), \cdots, (u_n, 1), (u_1, -1), \cdots, (u_n, -1)\}$. If is not difficult to show that

$$\begin{split} A\Big((\Gamma \times {}^{\phi}\overline{K_2})_{\omega \times {}^{\phi}c}\Big) = & \left(A(\Gamma_{\omega}) - A(\Gamma(E_{\phi-1})_{\omega}) + \begin{bmatrix} c & 0 \\ c & \\ 0 & c \end{bmatrix}\right) \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ & + (A(\Gamma(E_{\phi-1})_{\omega})) \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{split}$$

Let M be a regular matrix of order 2 satisfying

$$M^{-1}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Put

$$X = A(\Gamma_{\omega}) - A(\Gamma(E_{\phi-1})_{\omega}) + \begin{bmatrix} c & 0 \\ c \\ 0 & \cdot \\ 0 & c \end{bmatrix}$$

$$Y = A(\Gamma(E_{\phi-1})_{\omega}).$$

Then

$$(I \odot M^{-1}) A ((\Gamma \times {}^{\phi}\overline{K_2})_{\omega \times {}^{\phi}c}) (I \odot M)$$

$$= \begin{bmatrix} X + Y & 0 \\ 0 & X - Y \end{bmatrix}$$

$$= \begin{bmatrix} A(\Gamma_{\omega}) + \begin{bmatrix} c & 0 \\ c & \ddots \\ 0 & c \end{bmatrix} \qquad 0$$

$$= \begin{bmatrix} 0 & A(\Gamma_{\omega \phi}) + \begin{bmatrix} c & 0 \\ c & \ddots \\ 0 & c \end{bmatrix}$$

Since $|(I \otimes M^{-1})(I \otimes M)| = 1$ and

$$\left| \left[\lambda I - A \left(\left(\Gamma \times {}^{\phi} \overline{K_2} \right)_{\omega \times {}^{\phi} c} \right) \right] \right| = \left| \left[\lambda I - \left(I \otimes M^{-1} \right) A \left(\left(\Gamma \times {}^{\phi} \overline{K_2} \right)_{\omega \times {}^{\phi} c} \right) \left(I \otimes M \right) \right] \right|,$$

we have our theorem.

THEOREM 2. Let $K_{2\mu} = (K_2, \mu)$ be a weighted graph having constant weight on vertices. Then, for each $\phi \in C(\Gamma; \mathbb{Z}_2)$, we have

$$P((\Gamma \times {}^{\phi}K_2)_{\omega \times {}^{\phi}\mu}; \lambda) = P(\Gamma_{\omega}; \lambda - c_v - c_e)P(\Gamma_{\omega \phi}; \lambda - c_v + c_e),$$

where $c_v = \mu(v_1) = \mu(v_2)$ for the vertices v_1, v_2 and $c_e = \mu(e)$ for the edge e in K_2 .

PROOF. Clearly, we have

$$\begin{aligned} A\Big((\Gamma \times {}^{\phi}K_2)_{\omega \times {}^{\phi}\mu}\Big) &= \left(A(\Gamma_{\omega}) - A\Big(\Gamma(E_{\phi-1})_{\omega}\Big) + \begin{bmatrix}c_v & 0\\ & c_v \\ 0 & & c_v\end{bmatrix}\right) \otimes \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix} \\ &+ \left(A\Big(\Gamma(E_{\phi-1})_{\omega}\Big) + \begin{bmatrix}c_e & 0\\ & c_e \\ 0 & & c_e\end{bmatrix}\right) \otimes \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix} \end{aligned}$$

where $c_v = \mu(v_1) = \mu(v_2)$ and $c_e = \mu(e)$ for the edge e in K_2 . Let M be a regular matrix of order 2 satisfying

$$M^{-1}\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} M = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

Then

$$(I \otimes M^{-1}) A \left((\Gamma \times {}^{\phi}K_2)_{\omega \times {}^{\phi}\mu} \right) (I \otimes M)$$

$$= \begin{bmatrix} X+Y+\begin{bmatrix} c_{e} & 0\\ c_{e} \\ 0 & c_{e} \end{bmatrix} & 0\\ 0 & X-Y+\begin{bmatrix} c_{e} & 0\\ c_{e} \\ 0 & c_{e} \end{bmatrix} \end{bmatrix}$$

506

$$= \begin{bmatrix} A(\Gamma_{\omega}) + Z_1 & 0 \\ 0 & A(\Gamma_{\omega}\phi) + Z_2 \end{bmatrix}$$

where X and Y are the same matrices as in the proof of Theorem 1 and for i = 1, 2,

$$Z_{i} = \begin{bmatrix} c_{v} + (-1)^{i-1}c_{e} & 0 \\ & c_{v} + (-1)^{i-1}c_{e} \\ 0 & c_{v} + (-1)^{i-1}c_{e} \end{bmatrix}$$

Using method similar to the proof of Theorem 1, we have our theorem.

Note that for any $\phi \in C^1(\Gamma; Aut(\Lambda))$, the Laplacian function of $\Gamma \times {}^{\phi}\Lambda$ is the product of Laplacian functions of Γ and Λ with respect to ϕ . Clearly, the Laplacian function of the $\overline{K_2}$ is the zero function; and the Laplacian function of the K_2 has value 1 and -1 for each of its vertices and its edge, respectively. We shall denote the Laplacian function of a graph by \mathcal{L} if it makes no confusion. Then Theorem 1 and Theorem 2 give the following corollary.

COROLLARY 1. For any $\phi \in C^1(\Gamma; \mathbb{Z}_2)$,

(1)
$$P((\Gamma \times {}^{\phi}\overline{K_{2}})_{L}; \lambda) = P(\Gamma_{L}; \lambda)P(\Gamma_{L}{}^{\phi}; \lambda).$$

(2) $P((\Gamma \times {}^{\phi}K_{2})_{L}; \lambda) = P(\Gamma_{L}; \lambda)P(\Gamma_{L}{}^{\phi}; \lambda - 2).$

Now, we consider another invariant of weighted graphs called the *signature*. Since $A(\Gamma_{\omega})$ is symmetric, $A(\Gamma_{\omega})$ can be diagonalized through congruence over **R**. Let d_{+} denote the number of positive diagonal entries, and d_{-} the number of negative diagonal entries. The *signature* of a weighted graph (Γ_{ω}) is defined by $\sigma(A(\Gamma_{\omega})) = d_{+} - d_{-}$ and is denoted by $\sigma(\Gamma_{\omega})$. It is an invariant for weighted 2-isomorphic graphs (see [7]).

From now on, we will consider the weight function on $\overline{K_2}$ as zero function and the weight function μ on K_2 as the map defined by $\mu(v) = 0$ for each $v \in V(K_2)$ and $\mu(e) = c_e$ for the edge e of K_2 . Then we can compute the signature of a double covering of Γ .

COROLLARY 2.
$$\sigma((\Gamma \times {}^{\phi}\overline{K_2})_{\omega \times {}^{\phi}0}) = \sigma(\Gamma_{\omega}) + \sigma(\Gamma_{\omega}{}^{\phi})$$
 for $\phi \in C^1(\Gamma; \mathbb{Z}_2)$.

For convenience, we adapt the following notations. For a real number c, a weighted graph Γ_{η} and an eigenvalue λ of Γ_{η} ,

$$P(c)_{\eta}^{-} = \{\lambda < 0; \lambda + c > 0\},\$$

$$P(c)_{\eta}^{+} = \{\lambda > 0; \lambda + c > 0\},\$$

$$Z(c)_{\eta} = \{\lambda \neq 0; \lambda + c = 0\},\$$

$$N(c)_{\eta}^{-} = \{\lambda < 0; \lambda + c < 0\},\$$

$$N(c)_{\eta}^{+} = \{\lambda > 0; \lambda + c < 0\}.$$

We also denote the multiplicity of λ by $m_n(\lambda)$.

By using the above notations and Theorem 2, we get the signature of a K_2 -bundle over Γ . COROLLARY 3. For $\phi \in C^1(\Gamma; \mathbb{Z}_2)$,

(1) if $c_e \ge 0$, then

$$\begin{split} \sigma\Bigl((\Gamma \times {}^{\phi}K_2)_{\omega \times {}^{\phi}\mu}\Bigr) &= \sigma(\Gamma_{\omega}) + \sigma(\Gamma_{\omega \phi}) \\ &+ \Bigl(2\sum_{\lambda \in P(c_e)_{\omega}} m_{\omega}(\lambda) + m_{\omega}(0) + \sum_{\lambda \in Z(c_e)_{\omega}} m_{\omega}(\lambda)\Bigr) \\ &- \Bigl(2\sum_{\lambda \in N(-c_e)_{\omega \phi}} m_{\omega \phi}(\lambda) + m_{\omega \phi}(0) + \sum_{\lambda \in Z(-c_e)_{\omega \phi}} m_{\omega \phi}(\lambda)\Bigr). \end{split}$$

(2) if $c_e < 0$, then

$$\begin{split} \sigma\Big((\Gamma \times {}^{\phi}K_{2})_{\omega \times {}^{\phi}\mu}\Big) &= \sigma(\Gamma_{\omega}) + \sigma(\Gamma_{\omega}\circ) \\ &- \Big(2\sum_{\lambda \in N(\epsilon_{e})_{\omega}} m_{\omega}(\lambda) + m_{\omega}(0) + \sum_{\lambda \in Z(c_{e})_{\omega}} m_{\omega}(\lambda)\Big) \\ &+ \Big(2\sum_{\lambda \in P(-c_{e})_{\omega}\phi} m_{\omega}\phi(\lambda) + m_{\omega}\phi(0) + \sum_{\lambda \in Z(-c_{e})_{\omega}\phi} m_{\omega}\phi(\lambda)\Big). \end{split}$$

REMARK. Though the results in this section stated only for a simple graph, it remains true for any graph.

4. APPLICATIONS TO LINKS.

In a signed graph Γ_{ω} , an edge e of Γ is said to be *positive* if $\omega(e) = 1$ and *negative* otherwise. For a signed graph Γ_{ω} , we define a new weight function $\widetilde{\omega}$ of Γ by $\widetilde{\omega}(e) = \omega(e)$ for any edge $e \in \Gamma_{\omega}$ and $\widetilde{\omega}(u_i) = \sum_{j=1, i \neq j}^{n} a_{ij}$, where a_{ij} is the number of positive edges minus the number of negative edges which have two end vertices u_i and u_j . Given a knot or link L in \mathbb{R}^3 , we project it into \mathbb{R}^2 so that each crossing point has proper double crossing. The image of L is called a *link (or knot) diagram* of L, and we do not distinguish between a diagram and the image of L.

We may assume without loss of generality that a link diagram \widetilde{L} of L intersects itself transversely and has only finitely many crossings. The link diagram \widetilde{L} divides \mathbb{R}^2 into finitely many domains, which will be classified as shaded or unshaded. No two shaded or unshaded domains have an edge in common. We now construct a signed planar graph Γ_{ω} from \widetilde{L} as follows: take a point v_i from each unshaded domain D_i . These points form the set of vertices $V(\Gamma_{\omega})$ of Γ_{ω} . If the boundaries of D_i and D_j intersect k-times, say, crossing at $c_{\ell_1}, c_{\ell_2}, \cdots, c_{\ell_k}$, then we form multiple edges $e_{\ell_1}, e_{\ell_2}, \cdots, e_{\ell_k}$ on \mathbb{R}^2 with common end vertices v_i and v_j , where each edge e_{ℓ_m} passes through a crossing c_{ℓ_m} , for $m = 1, 2, \cdots, k$. To define the weight of an edge, first, we define the index $\epsilon(c)$ to each crossing c of the link diagram as in Figure 2. To each edge of Γ passes through exactly one crossing, say c_i of \widetilde{L} , the weight $\omega(e)$ will be defined as $\omega(e) = \epsilon(c)$. (See Figure 3).

FIGURE 2. The index $\epsilon(c)$.

FIGURE 3. The correspondence between \widetilde{L} and $\Gamma_{\omega}(\widetilde{L})$.

The resulting signed planar is called the graph of a link with respect to \widetilde{L} and is denoted by $\Gamma_{\omega}(\widetilde{L})$. The signed planar graph $\Gamma_{\omega}(\widetilde{L})$ depends not only on \widetilde{L} but also on shading. Conversely, given a signed planar graph Γ_{ϑ} , one can construct uniquely the link diagram $L(\widetilde{L}_{\vartheta})$ of a link so that $\Gamma_{\omega}(L(\widetilde{\Gamma}_{\vartheta})) = \Gamma_{\vartheta}$.

FIGURE 4. The index $\omega(c)$.

Suppose that we are given an oriented link L. The orientation of L induces the orientation of a diagram \widetilde{L} . We then define the second index $\omega(c)$, called the *twist or writhe* at each crossing c as show in Figure 4. We now need the third index $\eta_{\rho}(c)$ at crossing c. Let \widetilde{L} be an oriented diagram and ρ shading on \widetilde{L} . Let $\eta_{\rho}(c) = \omega(c)\delta_{\epsilon(c)}\omega(c)$, where δ denotes Kronecker's delta. We define $\eta_{\rho}(\widetilde{L}) = \sum \eta_{\rho}(c)$, where the summation runs over all crossing in \widetilde{L} . The index $\eta_{\rho}(\widetilde{L})$ depends not only on the shading ρ but also on the orientation of \widetilde{L} . The following Lemma can be found in ([7], [4]).

LEMMA 1. The signature $\sigma(L)$ of a link L is $\sigma(L) = \sigma(\Gamma(\widetilde{L})) - \eta_{\rho}(\widetilde{L})$.

Let \widetilde{L}_1 and \widetilde{L}_2 be link diagrams of L_1 and L_2 , respectively. The link L_2 is called a *double* covering of the link L_1 if $\Gamma_{\omega}(\widetilde{L}_2)$ is a double covering of $\Gamma_{\omega}(\widetilde{L}_1)$ as weighted graphs and it can be extended to a branched covering on \mathbb{R}^2 . Let ϕ be a voltage assignment in $C^1(\Gamma_{\omega}(\widetilde{L}); \mathbb{Z}_2)$ such that $\phi(e) = -1$ for some edge e and $\phi(e) = 1$ otherwise, then $\Gamma_{\omega}(\widetilde{L}) \times {}^{\phi}\overline{K_2}$ is a planar double covering of $\Gamma_{\omega}(\widetilde{L})$ of which the corresponding link is a double covering of L.

Therefore, one can construct the double covering link diagram $\widetilde{L}(\Gamma_{\omega}(\widetilde{L}) \times {}^{\phi}\overline{K_{2}})$ of \widetilde{L} . Moreover, we can give an orientation on $\widetilde{L}(\Gamma_{\omega}(\widetilde{L}) \times {}^{\phi}\overline{K_{2}})$ so that the covering map from \widetilde{L} to $\widetilde{L}(\Gamma_{\omega}(\widetilde{L}) \times {}^{\phi}\overline{K_{2}})$ preserves the orientation. We have $\eta_{\rho}(\widetilde{L}(\Gamma_{\omega}(\widetilde{L}) \times {}^{\phi}\overline{K_{2}})) = 2\eta_{\rho}(\widetilde{L})$ (see Figure 5).

FIGURE 5. Covering graph and covering link.

Therefore, by using Lemma 1 and Corollary 2, we get the following theorem. THEOREM 3. For any oriented link diagram \widetilde{L} ,

$$\sigma(\widetilde{L} \ (\Gamma_{\omega}(\widetilde{L} \) \times {}^{\phi}\overline{K_{2}})) = \sigma(\Gamma_{\omega}(\widetilde{L} \)) + \sigma(\Gamma_{\ldots\phi}(\widetilde{L} \)) - 2\eta_{\rho}(\widetilde{L} \)$$

for each $\phi \in C^1(\Gamma; \mathbb{Z}_2)$ such that $\phi(e) = -1$ for some edge $e \in \Gamma_{\omega}(\widetilde{L})$ and $\phi(e) = 1$ otherwise.

ACKNOWLEDGEMENT. The first author was supported by KOSEF and the second author was supported by TGRC-KOSEF.

REFERENCES

- 1. BIGGS, N., Algebraic Graph Theory, Cambridge University Press, 1974.
- 2. CHAE, Y.; KWAK, J.H. and LEE, J., Characteristic polynomials of some graph bundles, preprint.
- 3. CVETKOVIĆ, D.M.; DOOB, M. and SACHS, H., Spectra of Graphs, Academic Press, New York, 1979.
- 4. GORDON, C.M. and LITTERLAND, R.A., On the signature of a link, Invent. Math. 47 (1978), 53-69.
- GRONE, R.; MERRIS, R. and SUNDER, V.S., The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990), 218-238.
- 6. KWAK, J.H. and LEE, J., Isomorphism classes of graph bundles, Canad. J. Math. 42 (1990), 747-761.
- MURASUGI, K., On invariants of graphs with applications to knot theory, Trans. Amer. Math. Soc. 314 (1989), 1-49.
- MURASUGI, K., On the signature of graphs, C.R. Math. Rep. Acad. Sci. Canada, 10 (1989), 107-111.
- MURASUGI, K., On the certain numerical invariant of link type, Trans. Amer. Math. Soc. 117 (1965), 387-422.
- SCHWENK, A.J., Computing the characteristic polynomial of a graph, Lecture Notes in Mathematics 406, Springer-Verlag (1974), 153-172.