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1. INTRODUCTION. In 1976, Borglin and Keiding first introduced the notions of KF-
correspondences and KF-majorized correspondences and generalized Lemma 4 of Fan [5] to KF-
majorized correspondences. Recently, Yannelis and Prabhakar [10] introduced the notions of L-
majorized correspondences which generalize KF-majorized correspondences and they obtained an

existence theorem of an equilibrium for a compact abstract economy but not with L-majorized
preference correspondences.

In this paper, we shall prove existence theorems of equilibria for compact abstract economies

with L-majorized correspondences in Hausdorff topological vector space. These results generalize
the corresponding results of Borglin-Keiding ([1], Corollaries 2 and 3) with KF-majorized
preference correspondences.
2. PRELIMINARIES.

If A is a set, we shall denote by 2A the family of all subsets of A. If A is a subset of a

topological space X, we denote by clxA the closure of A in X. If A is a subset of a vector space,
we shall denote by coA the convex hull of A. Let E be a topological vector space and A,X be
non-empty subsets of E. If T:A--2E and S:A--2x are correspondences, then coT:A-,2E and
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cIS:A---2x are correspondences defined by (coT)(x)=coT(x),(clS)(x)= clxS(X for each x E A,
respectively.

Let X be a non-empty subset of a topological vector space. A correspondence :X2X is

said to be of class L [10] if (i) for each x eX, x C_co(z), (ii) for each

{z X:y (x)} is open in X. Let :X2x be a given correspondence and x ff X; then a

correspondence Cx:X2x is said to be an L-majorant of at x [10] if Cx is of class L and there

exists an open neighborhood Nx of x in X such that for each z E N,, (z) C ,(z). The

correspondence is said to be L-majorized if for each x X with (x) } there exists an L-
majorant of at x.

We remark here that the notions of a correspondence of class L and an L-majorized

correspondence defined above by Yannelis-Prabhakar in [10] generalize the notions of a KF-
correspondence and KF-majorized correspondence, respectively, introduced by Borglin-Keiding

[1]. These notions have been further generalized in ([2],[9]).
Let I be any set of agents. A generalized game (or an abstract economy)

F=(X,,A,,B,,P,),e is defined as a family of ordered quadruples (X,,A,,B,,P,) where

A,,B,:IIjeIX3---2x’ are constraint correspondences and P,:IIjeIX3---2x’ is a preference

correspondence. An equilibrium for F is a point X II, e ,X, such that for each I,, clB,() and A,()3 P,()= @. When A, B, for each E I, our definitions of an abstract

economy and an equilibrium coincide with the standard definitions, e.g., in Borglin-Keiding ([1],
p. 315) or in Yannelis-Prabhakar ([10], p. 242).

We shall need the following which is essentially Lemma 5.1 of Yannelis-Prabhakar [10]"
LEMMA 1. Let X be a topological space, Y be a vector space and :X--2Y be a

correspondence such that for each y Y, -’(y) is open in X. Define :X2" by (x) co (x)
for each x X. Then for each y q Y, -l(y) is open in X.

The following maximal element existence result is Theorem 5.1 of Yannelis-Prabhakar [10]"
LEMMA 2. Let X be a non-empty compact convex subset of a Hausdorff topological vector

space and :X-2x be a correspondence of class L. Then there exists " X such that

3. EXISTENCE OF EQUILIBRXA FOR L-MAJORIZED PREFEINCE
CORRESPONDENCES.
The following result is due to Yannelis-Prabhakar ([10], Corollary .1), which generalizes

Lemma 2 to L-majorized correspondence; however they did not give a proof. For completeness,
we shall give a proof.

THEOREM 1. Let X be a non-empty compact convex subset of a Hausdorff topological
vector space and :X-->2X be an L-majorized correspondence. Then there exists a maximal

element E X, i.e., &()- .
PROOF. Suppose that for each x X,(x)# @. Since is L-majorized for each x X,

there exist a correspondence :X--2x of class L and an open neighborhood N of x in X such

that for each z N,(z)C (z). The family {N:x X} is an open covering of X, which by
the compactness of X, contains a finite subcover {N,:i I}, where I is a finite set. Let

{G.:i I} be a closed refinement of {N.,:i I}. For each i I, define a correspondence

,: X--,2x by

J $.,(z), ifzGx,,
,(z)

X, if xCG,,.
Let : X---2x be defined by

(z) , i,(z) for each z e X.
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Then for each E I and each y E X, we have

,-’() {z x: ,(z)}

{z a,:y ,(z)} v {z x\a,. ,(z)}

{z G,.y ,(z)} u (x\v,)
(a, ;,’()) (x\a,)
(x\a,)u ;,’()

is open in X. Hence O-l(y)= ,e1,-l(y) is open in X for each y{hX. For each z{hX, there

exists 0 {5 I such that z G., C N.,, so that z co, (z) cO,o(Z); thus z

_
coO(z). It follows

0 0
that is of class L. Theref6re by [emma 2, there exists " X such that O(’’ )= . On the

other hand, for each zX, if zGx, cN., for some iEI then (z) C.,(z)=,(z) and if

z G. then ,(z) X so that we have (z) C C, e I8,(z) O(z) for each z {5 X. Since 0(5:) ,
we must have (’)= O which contradicts the assumption that (x)# for all x {5 X. Hence
there must exist {5 X such that (3) }. This completes the proof.

The following simple example shows that Theorem is suitable for an L-majorized

correspondence, which is not of class L, to assure the existence of a maximal element.

EXAMPLE 1. Let X [0,1] and : X--,2x be defined by

{y X:0_< y_< x}, if x (0,1),
(z) , if x {0,1 }.

Then is not of class L since -(y)is not open in X for any y {5 (0,1). For any x {5 (0,1), let

N, X, an open neighborhood of x in X, and define ,: X---,2x by

{y {5 X:0 _< y _< x}, if z {5 (0,1),
(z)

0, if z {5 {0,1 }.

Then it is easy to see that . is an L-majorant of at x for each x {5 (0,1), and hence is an L-
majorized correspondence. Therefore, by Theorem 1, there exists a maximal element.

As an application of Theorem 1, we shall prove the following existence theorem of

equilibrium for an abstract economy with an L-majorized preference correspondence in a

Hausdorff topological vector space.

THEOREM 2. Let X be a non-empty compact convex subset of a Hausdorff topological
vector space (a choice set). Let A,B:X---2x be constraint correspondences and P:X--2x be a

preference correspondence satisfying the following conditions:

(1) P is L-majorized,

(2) for each x {5 X,A(x) is non-empty and co A(x) C B(x),
(3) for each y {5 X,A-’(y)is open in X,
(4) the correspondence clB:X--,2x is upper semicontinuous.

Then there exists an equilibrium {5 X, i.e.,

PROOF.

{5 clxB() and A()N P(’) 0.

Let F= {x{hX:xclxB(x)} then F is closed in X since clB is upper
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semicontinuous. Define /,:X,2x by

(x) I co A(x) 3 P(x),

co A(a’),

ifxEF,

ifzF.

Suppose ,/,(x) # 0 for all x E X. Let x X be arbitrarily given. If x F, then Nx X\F is

an open neighborhood of x in X such that z coA(z) for all z Nx. Define q.,,:X2x by

/ }’ if x F,
(z)

co A(z), if x F.

Then z co4,(z) for all z X and, by (3) and Lemma 1, -l(y)= (X\F)3 (coA)-(y)is open in

X for each y X. It follows that is of class L. Moreover, for each z N,:,,(z)=coA(z)
x(z). Thus Cx is an L-majorant of at x.

Now suppose that x F. Then (z)=coA(x)91P(x) so that P(x); then by the

assumption (1), there exist Cx:X-2x of class L and an open neighborhood N of x in X such

that P(z) C (z) for all z X.
We now define : X---,2x by

=l co A(z) n(z), ifxF,
Z

! co A(z), if x F.

Note that as P(z) C Cx(z) for each z g, we have (z) C (z) for each z Y. Let z X; if

z F, by (2), we have z co A(z)= coVe(z) and if z F, then (z) co A(z) Cx(z) C (z) so

that z co (z) as z co (z). Hence z co (z) for all z X. Next, for each y X,

(%)-(u) {z x: (z)}

z f:y Cx(z)} U {z X\F:y (z)}

{z F: y [co A(z) D ,(z)]} t.) {z X\F: y co A(z)}

If 91 (co A)- ’(y) N ; l(y)] U [(X\F) N (co A)- l(y)]

[ l(y) U (X\F)] f) (co A)- (y)

is open in X by (3) and Lemma 1. Thus is also an L-majorant of at x. Therefore in both

cases, is L-majorized. By Theorem 1, there exists a point ’ X such that (’’ )= }, which is

a contradiction.

Hence there must exist a point " X such that () . By (2), we must have clxB(’
and co A() 71P() so that A() P() }. This completes the proof.

If A has an open graph in X X, then A-X(y) is open in X for each y X (see Corollary

4.1 in [10]). Hence we can obtain Corollary 2 of Borglin-Keiding [1] as an easy consequence of

Theorem 2:

COROLLARY 1. Let X be a non-empty compact convex subset of a Hausdorff topological
vector space and let P,A: X--,2x be two correspondences satisfying the following conditions:

(1) P is L-majorized,
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(2) for each x E X, A(x) is a non-empty convex,

(3) the graph of A is open in X x X,
(4) the correspondence cIA:X---,2x is upper semicontinuous.

Then there exists an equilibrium 2 E X, i.e.,

clxA( and A()f’l P() 0.

By applying Theorem 2, we can obtain an equilibrium for the following 1-person game:
EXAMPLE 2. Let X [0,1] be a compact convex choice set, constraint correspondences

A,B:X2x and preference correspondence P: X--2x be defined by

{1}, if x e {0,1},
A(x)

(0,x) U {1}, if x e (0,1),

(0,11, if x E [0,1),
B(x)

[0,11, if x 1,

J {y X:0 _< y _< x2}, if x (0,1),
P(x)

1, if x {0,1}.

Then P is L-majorized as in Example 1 and the whole assumptions of Theorem 2 are satisfied so

that, by Theorem 2, there exists an equilibrium X such that 1 clB(1) and A(1)fqP(1) .
As remarked before, equilibrium existence results for the correspondences of class L cannot be

applicable in this setting.
Let I be a finite set of agents and X be a Hausdorff topological vector space. Let

X H e tX, For a given correspondence Ai: X--.2x’, recall that a correspondence A: X--2x is

defined by A(x)= {y X:y, A,(x)}( r,--l(Ai(x)), where ri:X-.-X is the i-th projection).
Then it is easy to show that the following two conditions are equivalent:

(1) A is a correspondence of class L;
(2) for each x X, x, . coA,(x) and for each y X,,A[ l(y) is open in X.
Using the method in Borglin-Keiding [1], we shall now show that the case of n agents (n > 1)

with preference correspondences of class L can be reduced to a 1-person game with L-majorized
preference correspondence (i.e., Theorem 2).

THEOREM 3. Let r (Xi, Ai, B,,ei), be a generalized game where I is a finite set such

that for each I,
(1) X is a non-empty compact convex subset of a Hausdorff topological vector space,

(2) for each x X II, e tXi, Ai(x) is non-empty and coA,(x) C Bi(x),
(3) for each y Xi, A-l(y) is open in X,
(4) the correspondence clBi:X-2xi is upper semicontinuous,

(5) the correspondence P,: X-2x is of class L (where P, r,- P,).
Then F has an equilibrium X, i.e. for each I,

i clxB,() and A,() f’! Pi() O.
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PROOF. By (1), X II, e iX, is a non-empty compact convex subset of a Hausdorff

topological vector space. Define the correspondences A,B,P:X-2x by

and

where

A(x) II, tA,(x),

B(x) II, tB,(z),

n, t(x)P,(x) n A(x), if I(x) # O,
P(x)

q), if I(x) ,
I(x) {, I: P,(x) n A(x) #

By (2), for each x X,A(x)is non-empty and coA(x) C B(x). By (3), for each

yX,A-(y)= n,etA-l(y,) is open in X. Moreover, since for each xX,clxB(x)
clx[II tB,(x)] II, tclxB,(x), e.g., see ([3], p. 99), it follows from (4) and Lemma 3 of Fan

([4], p. 124) that clB: X--2X is also upper semicontinuous.

Now let x X and suppose that P(x) 7 . It follows that I(x) 7 . We shall first show that

there exists an open neighborhood Nx of x in X such that I(x) C I(z) (and hence also l(z) 7 )
for all z Nx. Indeed, let i I(x); as U,(x)nA(x)O, take any y P,(x)nA(x), then

x (P,)- l(y) n A-l(y). Let N, (P,)-l(y)n A-l(y), then N is an open neighborhood of x in X
since Pt, is of class L and A-(y) is open. Let N,= n,z(,)N,, then N is an open

neighborhood of x in X. If z N,, then for each i I(x),z N, (P:)-’(y)n A-’(y) so that

y P,(z)F)A(z) and hence P(z)N A(z) qJ; that is I(z). This shows that I(x) C I(z) for all

z Nx. Next fix o I(x). Then for any z N,, we have

P(z) n, ,(:)P,(z)n A(z)
c n, z(x)P,(z)n A(z) (since I(x) C I(z))

c P:o(Z) n A(z).

Now we define a correspondence Px:x2X by

P,(z) Rio(Z n A(z) o z e X.

Then for any z N we have P(z)C Px(z) and P is of class L. Therefore P is an L-majorant

of P at x. This shows that P is L-majorized. Hence all the hypotheses of Theorem 2 are

satisfied so that there exists X such that clxB( and A()n P()- . It follows that

", clxB,(’ for each i I. We shall now show that I(’)= . Suppose I() q). Note that

P() (H, e M,)n A(), where

X,, if

_
I(x),

M,
P,(), if i I(z).

Thus A()n P() q) implies A,()n P,() qJ for at least one I() so that A()n P(’) q)

for at least one i I(’) which contradicts the definition of I(). Therefore we must have

I() q), i.e., A()n P()= for all i I, and hence A,()r]P,()= q) for each i I. This
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completes the proof.
REMARK. Theorem 3 is closely related to Theorexn 6.1 of Yannelis-Prabhakar [10]. In

fact, in Theorem 3, X, need not be a metrizable subset of a locally convex space; but in Theorem

6.1 in [10], the set of agents I need not be finite.

The following result is a special case of Lamina in [2]:
LEMMA 3. Let X be a non-empty convex subset of a topological vector space and

P:X+2x be L-majorized. If every open subset of X containing the set {z E X:P(z) } is

paracompact, then there exists a correspondence : X+2x of class L such that P(x) C (z) for all

xEX.
We shall now generalize Theorem 3 to the case P,: X--,2X is L-majorized as follows:

THEOREM 4. Let F (X,,A,,B,,P,),e be a generalized game where I is a finite set such

that for each ( I.

(1) X, is a non-empty compact convex subset of a Hausdorff topological vector space such

that every open subset of X II, e tX, containing the set {z X: P,(z) q)} is paracompact,

(2) for each x X,A,(x) is non-empty and coA,(x) C B,(x),
(3) for each y X,,A;- l(y) is open in X,

(4) the correspondence cIB,:X2X’ is upper semicontinuous,

(5) the correspondence P,: X-2x is L-majorized (where P: r,- P0).
Then F has an equilibrium E X, i.e., for each I,

, clxB,() and A,()C3 P,() J.

PROOF. By the assumptions (1) and (5), the whole hypotheses of Lemma 1 in [2] are

satisfied, so that for each I, there exists a correspondence Q,:X--,2x of class L (where
Q, r,-1 Q, for some Q,:X-2x’) such that P,(x)C Q,(x) for each x X. Therefore the

conclusion follows from Theorem 3.

Theorem 4 is a generalization of Corollary 3 of Borglin-Keiding [1] to infinite dimensional

spaces as well as to L-majorized preference correspondences.

Finally we remark that the condition "every open subset of X containing the set

{x X: P(z) # q)} is paracompact" in Theorem 4 is satisfied if X is perfectly normal (i.e., every

open subset of X is an F-set).
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