EQUILIBRIA OF GENERALIZED GAMES WITH *L*-MAJORIZED CORRESPONDENCES

XIE PING DING

Department of Mathematics Sichuan Normal University Chengdu, Sichuan, China

WON KYU KIM

Department of Mathematics Education Chungbuk National University Cheongju 360-763, Korea

and

KOK-KEONG TAN

Department of Mathematics, Statistics and Computing Science Dalhousie University Halifax, Nova Scotia Canada B3H 3J5

(Received June 8, 1992)

ABSTRACT. In this paper, we shall prove three equilibrium existence theorems for generalized games in Hausdorff topological vector spaces.

KEY WORDS AND PHRASES. Equilibrium, maximal element, generalized game, L-majorized correspondence, class L.

1991 AMS SUBJECT CLASSIFICATION CODE. 90A14.

1. INTRODUCTION. In 1976, Borglin and Keiding first introduced the notions of KFcorrespondences and KF-majorized correspondences and generalized Lemma 4 of Fan [5] to KFmajorized correspondences. Recently, Yannelis and Prabhakar [10] introduced the notions of Lmajorized correspondences which generalize KF-majorized correspondences and they obtained an
existence theorem of an equilibrium for a compact abstract economy but not with L-majorized
preference correspondences.

In this paper, we shall prove existence theorems of equilibria for compact abstract economies with L-majorized correspondences in Hausdorff topological vector space. These results generalize the corresponding results of Borglin-Keiding ([1], Corollaries 2 and 3) with KF-majorized preference correspondences.

2. PRELIMINARIES.

If A is a set, we shall denote by 2^A the family of all subsets of A. If A is a subset of a topological space X, we denote by cl_XA the closure of A in X. If A is a subset of a vector space, we shall denote by coA the convex hull of A. Let E be a topological vector space and A, X be non-empty subsets of E. If $T: A \to 2^E$ and $S: A \to 2^X$ are correspondences, then $coT: A \to 2^E$ and

 $clS: A \rightarrow 2^X$ are correspondences defined by $(coT)(x) = coT(x), (clS)(x) = cl_XS(x)$ for each $x \in A$, respectively.

Let X be a non-empty subset of a topological vector space. A correspondence $\phi: X \to 2^X$ is said to be of class L [10] if (i) for each $x \in X, x \notin co\phi(x)$, (ii) for each $y \in X, \phi^{-1}(y)$ $= \{x \in X: y \in \phi(x)\}$ is open in X. Let $\phi: X \to 2^X$ be a given correspondence and $x \in X$; then a correspondence $\phi_x: X \to 2^X$ is said to be an L-majorant of ϕ at x [10] if ϕ_x is of class L and there exists an open neighborhood N_x of x in X such that for each $z \in N_x$, $\phi(z) \subset \phi_x(z)$. The correspondence ϕ is said to be L-majorized if for each $x \in X$ with $\phi(x) \neq \emptyset$ there exists an Lmajorant of ϕ at x.

We remark here that the notions of a correspondence of class L and an L-majorized correspondence defined above by Yannelis-Prabhakar in [10] generalize the notions of a KF-correspondence and KF-majorized correspondence, respectively, introduced by Borglin-Keiding [1]. These notions have been further generalized in ([2],[9]).

Let I be any set of agents. A generalized game (or an abstract economy) $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ is defined as a family of ordered quadruples (X_i, A_i, B_i, P_i) where $A_i, B_i: \prod_{j \in I} X_j \rightarrow 2^{X_i}$ are constraint correspondences and $P_i: \prod_{j \in I} X_j \rightarrow 2^{X_i}$ is a preference correspondence. An equilibrium for Γ is a point $\hat{x} \in X = \prod_{i \in I} X_i$ such that for each $i \in I$, $\hat{x}_i \in clB_i(\hat{x})$ and $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$. When $A_i = B_i$ for each $i \in I$, our definitions of an abstract economy and an equilibrium coincide with the standard definitions, e.g., in Borglin-Keiding ([1], p. 315) or in Yannelis-Prabhakar ([10], p. 242).

We shall need the following which is essentially Lemma 5.1 of Yannelis-Prabhakar [10]:

LEMMA 1. Let X be a topological space, Y be a vector space and $\phi: X \to 2^Y$ be a correspondence such that for each $y \in Y, \phi^{-1}(y)$ is open in X. Define $\psi: X \to 2^Y$ by $\psi(x) = co \phi(x)$ for each $x \in X$. Then for each $y \in Y, \psi^{-1}(y)$ is open in X.

The following maximal element existence result is Theorem 5.1 of Yannelis-Prabhakar [10]:

LEMMA 2. Let X be a non-empty compact convex subset of a Hausdorff topological vector space and $\phi: X \to 2^X$ be a correspondence of class L. Then there exists $\hat{x} \in X$ such that $\phi(\hat{x}) = \emptyset$.

3. EXISTENCE OF EQUILIBRIA FOR *L*-MAJORIZED PREFERENCE CORRESPONDENCES.

The following result is due to Yannelis-Prabhakar ([10], Corollary 5.1), which generalizes Lemma 2 to L-majorized correspondence; however they did not give a proof. For completeness, we shall give a proof.

THEOREM 1. Let X be a non-empty compact convex subset of a Hausdorff topological vector space and $\phi: X \to 2^X$ be an L-majorized correspondence. Then there exists a maximal element $\hat{x} \in X$, i.e., $\phi(\hat{x}) = \emptyset$.

PROOF. Suppose that for each $x \in X$, $\phi(x) \neq \emptyset$. Since ϕ is *L*-majorized for each $x \in X$, there exist a correspondence $\phi_x: X \to 2^X$ of class *L* and an open neighborhood N_x of *x* in *X* such that for each $z \in N_x, \phi(z) \subset \phi_x(z)$. The family $\{N_x: x \in X\}$ is an open covering of *X*, which by the compactness of *X*, contains a finite subcover $\{N_x: i \in I\}$, where *I* is a finite set. Let $\{G_x: i \in I\}$ be a closed refinement of $\{N_x: i \in I\}$. For each $i \in I$, define a correspondence $\phi_i: X \to 2^X$ by

$$\phi_{\mathbf{i}}(z) = \begin{cases} \phi_{x_{\mathbf{i}}}(z), & \text{ if } z \in G_{x_{\mathbf{i}}}, \\ X, & \text{ if } x \notin G_{x_{\mathbf{i}}}. \end{cases}$$

Let $\Phi: X \rightarrow 2^X$ be defined by

$$\Phi(z) = \bigcap_{i \in I} \phi_i(z)$$
 for each $z \in X$.

Then for each $i \in I$ and each $y \in X$, we have

$$\begin{split} \phi_{\mathbf{i}}^{-1}(y) &= \{z \in X : y \in \phi_{\mathbf{i}}(z)\} \\ &= \{z \in G_{x_{\mathbf{i}}} : y \in \phi_{\mathbf{i}}(z)\} \cup \{z \in X \setminus G_{x_{\mathbf{i}}} : y \in \phi_{\mathbf{i}}(z)\} \\ &= \{z \in G_{x_{\mathbf{i}}} : y \in \phi_{\mathbf{i}}(z)\} \cup (X \setminus G_{x_{\mathbf{i}}}) \\ &= (G_{x_{\mathbf{i}}} \cap \phi_{x_{\mathbf{i}}}^{-1}(y)) \cup (X \setminus G_{x_{\mathbf{i}}}) \\ &= (X \setminus G_{x_{\mathbf{i}}}) \cup \phi_{x_{\mathbf{i}}}^{-1}(y) \end{split}$$

is open in X. Hence $\Phi^{-1}(y) = \bigcap_{i \in I} \phi_i^{-1}(y)$ is open in X for each $y \in X$. For each $z \in X$, there exists $i_0 \in I$ such that $z \in G_{x_{i_0}} \subset N_{x_{i_0}}$, so that $z \notin co\phi_{x_{i_0}}(z) = co\phi_{i_0}(z)$; thus $z \notin co\Phi(z)$. It follows that Φ is of class L. Therefore by Lemma 2, there exists $\tilde{x} \in X$ such that $\Phi(\tilde{x}) = \emptyset$. On the other hand, for each $z \in X$, if $z \in G_{x_i} \subset N_{x_i}$ for some $i \in I$ then $\phi(z) \subset \phi_{x_i}(z) = \phi_i(z)$ and if $z \notin G_{x_i}$ then $\phi_i(z) = X$ so that we have $\phi(z) \subset \bigcap_{i \in I} \phi_i(z) = \Phi(z)$ for each $z \in X$. Since $\Phi(\tilde{x}) = \phi$, we must have $\phi(\tilde{x}) = \emptyset$ which contradicts the assumption that $\phi(x) \neq \emptyset$ for all $x \in X$. Hence there must exist $\hat{x} \in X$ such that $\phi(\hat{x}) = \emptyset$. This completes the proof.

The following simple example shows that Theorem 1 is suitable for an L-majorized correspondence, which is not of class L, to assure the existence of a maximal element.

EXAMPLE 1. Let X = [0,1] and $\phi: X \rightarrow 2^X$ be defined by

$$\phi(x) = \begin{cases} \{y \in X : 0 \le y \le x^2\}, & \text{if } x \in (0,1), \\ \emptyset, & \text{if } x \in \{0,1\}. \end{cases}$$

Then ϕ is not of class L since $\phi^{-1}(y)$ is not open in X for any $y \in (0,1)$. For any $x \in (0,1)$, let $N_x = X$, an open neighborhood of x in X, and define $\phi_x: X \to 2^X$ by

$$\phi_x(z) = \begin{cases} \{y \in X : 0 \le y \le x\}, & \text{ if } z \in (0,1), \\ \emptyset, & \text{ if } z \in \{0,1\}. \end{cases}$$

Then it is easy to see that ϕ_x is an *L*-majorant of ϕ at x for each $x \in (0,1)$, and hence ϕ is an *L*-majorized correspondence. Therefore, by Theorem 1, there exists a maximal element.

As an application of Theorem 1, we shall prove the following existence theorem of equilibrium for an abstract economy with an L-majorized preference correspondence in a Hausdorff topological vector space.

THEOREM 2. Let X be a non-empty compact convex subset of a Hausdorff topological vector space (a choice set). Let $A, B: X \to 2^X$ be constraint correspondences and $P: X \to 2^X$ be a preference correspondence satisfying the following conditions:

- (1) P is L-majorized,
- (2) for each $x \in X$, A(x) is non-empty and $co A(x) \subset B(x)$,
- (3) for each $y \in X$, $A^{-1}(y)$ is open in X,
- (4) the correspondence $clB: X \rightarrow 2^X$ is upper semicontinuous.

Then there exists an equilibrium $\hat{x} \in X$, i.e.,

$$\widehat{x} \in cl_X B(\widehat{x})$$
 and $A(\widehat{x}) \cap P(\widehat{x}) = \emptyset$.

PROOF. Let $F = \{x \in X : x \in cl_X B(x)\}$, then F is closed in X since clB is upper

semicontinuous. Define $\psi: X \rightarrow 2^X$ by

$$\psi(x) = \begin{cases} & \text{co } A(x) \cap P(x), & \text{if } x \in F, \\ & \text{co } A(x), & \text{if } x \notin F. \end{cases}$$

Suppose $\psi(x) \neq \emptyset$ for all $x \in X$. Let $x \in X$ be arbitrarily given. If $x \notin F$, then $N_x = X \setminus F$ is an open neighborhood of x in X such that $z \notin coA(z)$ for all $z \in N_x$. Define $\psi_x: X \to 2^X$ by

$$\psi_x(z) = \begin{cases} \emptyset, & \text{if } x \in F, \\ & co \ A(z), & \text{if } x \notin F. \end{cases}$$

Then $z \notin co\psi_x(z)$ for all $z \in X$ and, by (3) and Lemma 1, $\psi_x^{-1}(y) = (X \setminus F) \cap (coA)^{-1}(y)$ is open in X for each $y \in X$. It follows that ψ_x is of class L. Moreover, for each $z \in N_x, \psi(z) = coA(z) = \psi_x(z)$. Thus ψ_x is an L-majorant of ψ at x.

Now suppose that $x \in F$. Then $\psi(x) = coA(x) \cap P(x)$ so that $P(x) \neq \emptyset$; then by the assumption (1), there exist $\phi_x: X \to 2^X$ of class L and an open neighborhood N_x of x in X such that $P(z) \subset \phi_x(z)$ for all $z \in X$.

We now define $\psi_x: X \to 2^X$ by

$$\psi_x(z) = \begin{cases} & co \ A(z) \cap \phi_x(z), & \text{if } x \in F, \\ & co \ A(z), & \text{if } x \notin F. \end{cases}$$

Note that as $P(z) \subset \phi_x(z)$ for each $z \in N_x$, we have $\psi(z) \subset \psi_x(z)$ for each $z \in N_x$. Let $z \in X$; if $z \notin F$, by (2), we have $z \notin co \ A(z) = co\psi_x(z)$ and if $z \in F$, then $\psi_x(z) = co \ A(z) \cap \phi_x(z) \subset \phi_x(z)$ so that $z \notin co \ \psi_x(z)$ as $z \notin co \ \phi_x(z)$. Hence $z \notin co \ \psi_x(z)$ for all $z \in X$. Next, for each $y \in X$,

$$\begin{split} (\psi_x)^{-1}(y) &= \{ z \in X : y \in \psi_x(z) \} \\ &= z \in F : y \in \psi_x(z) \} \cup \{ z \in X \setminus F : y \in \psi_x(z) \} \\ &= \{ z \in F : y \in [co \ A(z) \cap \phi_x(z)] \} \cup \{ z \in X \setminus F : y \in co \ A(z) \} \\ &= [F \cap (co \ A)^{-1}(y) \cap \phi_x^{-1}(y)] \cup [(X \setminus F) \cap (co \ A)^{-1}(y)] \\ &= [\phi_x^{-1}(y) \cup (X \setminus F)] \cap (co \ A)^{-1}(y) \end{split}$$

is open in X by (3) and Lemma 1. Thus ψ_x is also an L-majorant of ψ at x. Therefore in both cases, ψ is L-majorized. By Theorem 1, there exists a point $\tilde{x} \in X$ such that $\psi(\tilde{x}) = \emptyset$, which is a contradiction.

Hence there must exist a point $\hat{x} \in X$ such that $\psi(\hat{x}) = \emptyset$. By (2), we must have $\hat{x} \in cl_X B(\hat{x})$ and $co \ A(\hat{x}) \cap P(\hat{x}) = \emptyset$ so that $A(\hat{x}) \cap P(\hat{x}) = \emptyset$. This completes the proof.

If A has an open graph in $X \times X$, then $A^{-1}(y)$ is open in X for each $y \in X$ (see Corollary 4.1 in [10]). Hence we can obtain Corollary 2 of Borglin-Keiding [1] as an easy consequence of Theorem 2:

COROLLARY 1. Let X be a non-empty compact convex subset of a Hausdorff topological vector space and let $P, A: X \rightarrow 2^X$ be two correspondences satisfying the following conditions:

(1) P is L-majorized,

- (2) for each $x \in X$, A(x) is a non-empty convex,
- (3) the graph of A is open in $X \times X$,
- (4) the correspondence $clA: X \rightarrow 2^X$ is upper semicontinuous.

Then there exists an equilibrium $\hat{x} \in X$, i.e.,

$$\widehat{x} \in cl_X A(\widehat{x}) \quad ext{and} \quad A(\widehat{x}) \cap P(\widehat{x}) = \emptyset.$$

By applying Theorem 2, we can obtain an equilibrium for the following 1-person game:

EXAMPLE 2. Let X = [0,1] be a compact convex choice set, constraint correspondences $A, B: X \rightarrow 2^X$ and preference correspondence $P: X \rightarrow 2^X$ be defined by

$$A(x) = \begin{cases} \{1\}, & \text{if } x \in \{0, 1\}, \\ (0, x) \cup \{1\}, & \text{if } x \in (0, 1), \end{cases}$$

$$B(x) = \begin{cases} (0,1], & \text{if } x \in [0,1] \\ [0,1], & \text{if } x = 1, \end{cases}$$

$$P(x) = \begin{cases} \{y \in X : 0 \le y \le x^2\}, & \text{if } x \in (0,1), \\ \emptyset, & \text{if } x \in \{0,1\}. \end{cases}$$

Then P is L-majorized as in Example 1 and the whole assumptions of Theorem 2 are satisfied so that, by Theorem 2, there exists an equilibrium $1 \in X$ such that $1 \in clB(1)$ and $A(1) \cap P(1) = \emptyset$. As remarked before, equilibrium existence results for the correspondences of class L cannot be applicable in this setting.

Let *I* be a finite set of agents and X_i be a Hausdorff topological vector space. Let $X = \prod_{i \in I} X_i$. For a given correspondence $A_i: X \to 2^{X_i}$, recall that a correspondence $A'_i: X \to 2^X$ is defined by $A'_i(x) = \{y \in X: y_i \in A_i(x)\} (= \pi_i^{-1}(A_i(x)))$, where $\pi_i: X \to X_i$ is the *i*-th projection). Then it is easy to show that the following two conditions are equivalent:

- (1) A'_{i} is a correspondence of class L;
- (2) for each $x \in X$, $x_i \notin coA_i(x)$ and for each $y \in X_i$, $A_i^{-1}(y)$ is open in X.

Using the method in Borglin-Keiding [1], we shall now show that the case of n agents (n > 1) with preference correspondences of class L can be reduced to a 1-person game with L-majorized preference correspondence (i.e., Theorem 2).

THEOREM 3. Let $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ be a generalized game where I is a finite set such that for each $i \in I$,

- (1) X_i is a non-empty compact convex subset of a Hausdorff topological vector space,
- (2) for each $x \in X = \prod_{i \in I} X_i$, $A_i(x)$ is non-empty and $coA_i(x) \subset B_i(x)$,
- (3) for each $y \in X_i, A_i^{-1}(y)$ is open in X,
- (4) the correspondence $clB_i: X \rightarrow 2^{X_i}$ is upper semicontinuous,
- (5) the correspondence $P'_{1}: X \to 2^{X}$ is of class L (where $P'_{1} = \pi_{1}^{-1} \circ P_{1}$).

Then Γ has an equilibrium $\hat{x} \in X$, i.e. for each $i \in I$,

$$\widehat{x}_i \in cl_X B_i(\widehat{x}) \text{ and } A_i(\widehat{x}) \cap P_i(\widehat{x}) = \emptyset.$$

PROOF. By (1), $X = \prod_{i \in I} X_i$ is a non-empty compact convex subset of a Hausdorff topological vector space. Define the correspondences $A, B, P: X \rightarrow 2^X$ by

$$A(x) = \prod_{i \in I} A_i(x),$$
$$B(x) = \prod_{i \in I} B_i(x),$$

and

$$P(x) = \begin{cases} \bigcap_{i \in I(x)} P'_i(x) \cap A(x), & \text{if } I(x) \neq \emptyset, \\ \emptyset, & \text{if } I(x) = \emptyset, \end{cases}$$

where

 $I(x) = \{ i \in I : P'_i(x) \cap A(x) \neq \emptyset \}.$

By (2), for each $x \in X, A(x)$ is non-empty and $coA(x) \subset B(x)$. By (3), for each $y \in X, A^{-1}(y) = \bigcap_{i \in I} A_i^{-1}(y_i)$ is open in X. Moreover, since for each $x \in X, cl_X B(x) = cl_X[\prod_{i \in I} B_i(x)] = \prod_{i \in I} cl_X B_i(x)$, e.g., see ([3], p. 99), it follows from (4) and Lemma 3 of Fan ([4], p. 124) that $clB: X \to 2^X$ is also upper semicontinuous.

Now let $x \in X$ and suppose that $P(x) \neq \emptyset$. It follows that $I(x) \neq \emptyset$. We shall first show that there exists an open neighborhood N_x of x in X such that $I(x) \subset I(z)$ (and hence also $I(z) \neq \emptyset$) for all $z \in N_x$. Indeed, let $i \in I(x)$; as $P'_i(x) \cap A(x) \neq \emptyset$, take any $y \in P'_i(x) \cap A(x)$, then $x \in (P'_i)^{-1}(y) \cap A^{-1}(y)$. Let $N_i = (P'_i)^{-1}(y) \cap A^{-1}(y)$, then N_i is an open neighborhood of x in X since P'_i is of class L and $A^{-1}(y)$ is open. Let $N_x = \bigcap_{i \in I(x)} N_i$, then N_x is an open neighborhood of x in X. If $z \in N_x$, then for each $i \in I(x), z \in N_i = (P'_i)^{-1}(y) \cap A^{-1}(y)$ so that $y \in P'_i(z) \cap A(z)$ and hence $P'_i(z) \cap A(z) \neq \emptyset$; that is $i \in I(z)$. This shows that $I(x) \subset I(z)$ for all $z \in N_x$. Next fix $i_0 \in I(x)$. Then for any $z \in N_x$, we have

$$P(z) = \bigcap_{i \in I(z)} P'_i(z) \cap A(z)$$

$$\subset \bigcap_{i \in I(x)} P'_i(z) \cap A(z) \qquad (\text{since } I(x) \subset I(z))$$

$$\subset P'_{i_0}(z) \cap A(z).$$

Now we define a correspondence $P_x: X \rightarrow 2^X$ by

$$P_x(z) = P'_{i_0}(z) \cap A(z)$$
 for each $z \in X$.

Then for any $z \in N_x$ we have $P(z) \subset P_x(z)$ and P_x is of class L. Therefore P_x is an L-majorant of P at x. This shows that P is L-majorized. Hence all the hypotheses of Theorem 2 are satisfied so that there exists $\hat{x} \in X$ such that $\hat{x} \in cl_X B(\hat{x})$ and $A(\hat{x}) \cap P(\hat{x}) = \emptyset$. It follows that $\hat{x}_i \in cl_X B_i(\hat{x})$ for each $i \in I$. We shall now show that $I(\hat{x}) = \emptyset$. Suppose $I(\hat{x}) \neq \emptyset$. Note that $P(\hat{x}) = (\prod_{i \in I} M_i) \cap A(\hat{x})$, where

$$M_{i} = \begin{cases} X_{i}, & \text{if } i \notin I(x), \\ P_{i}(\widehat{x}), & \text{if } i \in I(x). \end{cases}$$

Thus $A(\hat{x}) \cap P(\hat{x}) = \emptyset$ implies $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$ for at least one $i \in I(\hat{x})$ so that $A(\hat{x}) \cap P'_i(\hat{x}) = \emptyset$ for at least one $i \in I(\hat{x})$ which contradicts the definition of $I(\hat{x})$. Therefore we must have $I(\hat{x}) = \emptyset$, i.e., $A(\hat{x}) \cap P'_i(\hat{x}) = \emptyset$ for all $i \in I$, and hence $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$ for each $i \in I$. This completes the proof.

REMARK. Theorem 3 is closely related to Theorem 6.1 of Yannelis-Prabhakar [10]. In fact, in Theorem 3, X_1 need not be a metrizable subset of a locally convex space; but in Theorem 6.1 in [10], the set of agents I need not be finite.

The following result is a special case of Lemma 1 in [2]:

LEMMA 3. Let X be a non-empty convex subset of a topological vector space and $P: X \to 2^X$ be L-majorized. If every open subset of X containing the set $\{x \in X: P(x) \neq \emptyset\}$ is paracompact, then there exists a correspondence $\phi: X \to 2^X$ of class L such that $P(x) \subset \phi(x)$ for all $x \in X$.

We shall now generalize Theorem 3 to the case $P'_i: X \rightarrow 2^X$ is L-majorized as follows:

THEOREM 4. Let $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ be a generalized game where I is a finite set such that for each $i \in I$.

(1) X_i is a non-empty compact convex subset of a Hausdorff topological vector space such that every open subset of $X = \prod_{i \in I} X_i$ containing the set $\{x \in X : P'_i(x) \neq \emptyset\}$ is paracompact,

- (2) for each $x \in X, A_i(x)$ is non-empty and $coA_i(x) \subset B_i(x)$,
- (3) for each $y \in X_i, A_i^{-1}(y)$ is open in X,
- (4) the correspondence $clB_i: X \rightarrow 2^{X_i}$ is upper semicontinuous,
- (5) the correspondence $P'_1: X \to 2^X$ is L-majorized (where $P'_1 = \pi_1^{-1} \circ P_1$).

Then Γ has an equilibrium $\hat{x} \in X$, i.e., for each $i \in I$,

$$\widehat{x}_{i} \in cl_{X}B_{i}(\widehat{x}) \text{ and } A_{i}(\widehat{x}) \cap P_{i}(\widehat{x}) = \emptyset.$$

PROOF. By the assumptions (1) and (5), the whole hypotheses of Lemma 1 in [2] are satisfied, so that for each $i \in I$, there exists a correspondence $Q'_i: X \to 2^X$ of class L (where $Q'_i = \pi_i^{-1} \circ Q_i$ for some $Q_i: X \to 2^{X_i}$) such that $P'_i(x) \subset Q'_i(x)$ for each $x \in X$. Therefore the conclusion follows from Theorem 3.

Theorem 4 is a generalization of Corollary 3 of Borglin-Keiding [1] to infinite dimensional spaces as well as to L-majorized preference correspondences.

Finally we remark that the condition "every open subset of X containing the set $\{x \in X: P'_i(x) \neq \emptyset\}$ is paracompact" in Theorem 4 is satisfied if X is perfectly normal (i.e., every open subset of X is an F_{σ} -set).

ACKNOWLEDEMENT. This work was partially supported by NSERC of Canada under grant A-8096 and for the second author by KOSEF in 1993.

REFERENCES

- 1. BORGLIN, A. and KEIDING, H., Existence of equilibrium actions and of equilibrium: A note on the 'new' existence theorem, J. Math. Econom. 3 (1976), 313-316.
- DING, X.P.; KIM, W.K. and TAN, K.-K., Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. 164 (1992), 508-517.
- 3. DUGUNDJI, J., Topology, Allyn and Bacon, Inc., Boston, 1966.
- FAN, K., Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
- 5. FAN, K., A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.

- 6. LASSONDE, M., Fixed point for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), 46-60.
- 7. MICHAEL, E., A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838.
- 8. SHAFER, W. and SONNENSCHEIN, H., Equilibrium in abstract economies without ordered preferences, J. Math. Econom. 2 (1975), 345-348.
- 9. TULCEA, C.I., On the equilibriums of generalized games, in The Center for Mathematical Studies in Economics and Management Science, Paper No. 696, 1986.
- 10. YANNELIS, N.C. and PRABHAKAR, N.D., Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), 233-245.
- 11. TARAFDAR, E., A fixed point theorem and equilibrium point of an abstract economy, J. Math. Econom. 20 (1991), 211-218.