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ABSTRACT. This present paper is concerned with set functions related to {0, two valued measures.

These set functions are either outer measures or have many of the same characteristics. We investigate their

properties and look at relations among them.We note in particular their association with the semi-

separation of lattices.

To be more specific, we define three set functions kt", ’, and related to iteI(L) the {0, two

valued set functions defined on the algebra generated by the lattice of sets L st kt is a finitely additive

monotone set function for which it((O)=0.We note relations among them and properties they possess.ln

particular necessary and sufficient conditions are given for the semi-separation of lattices in terms of

equality of set functions over a lattice of subsets.

Finally the notion of I-lattice is defined, we look at some properties of these with certain other side

conditions assume, and end with an application involving semi-separation and I-lattices.
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1) INTRODUCTION

In this paper we consider set functions that are related to a measure it, namely, it’, it", It* and also

some associated premeasures.We will investigate some of their properties and look at relations among

them, and note in particular their association with semi-separation.

To be more precise let X be an abstract set and L a lattice of sets containing X and . Then for

IteI(I...), the two valued {0, finitely additive non-trivial measures defined on A(L) the algebra generated

by the lattice L, we define It’, and note that it is a finitely subadditive "outer measure". (See section 2 for

notations and terminology, sections 3 for definitions of It’, It".) We also prove that a) If L is regular

S(It)=S(It’).b) SIt’={E X_E and either E_L or E’_L where It(L)=l for LeL} where SIt’ are It’-
measurable sets.c) LIt={ LeL it(L)=it’(L)} is a lattice, d) If Itl, it2el(L) and it l<It2 (L) then

LIt2_LIt 1.e) SIt’L=LIt.
We also define It" for itel(o*, L) and prove that it is a countably sub-additive outer measure.We then

prove that the collection of measurable sets Sit"={E X_E st E_Ln n=l, 2 it(Ln)=l all n LneL
or E’_Ln n=l, 2 I.t(Ln)=l all n LneL}.

Then we prove the following relations hold among It’ and It"; a) It<It"<It’ (L) It"<It=It’ (L’) .b) If

I.tei(o*, L) and L cg then it"=it’ on L’.c) If Itel(o*, L) and It=It"=it’ on L then itelR(G, L) .d)

IteI$(L) for IteI(o*, L) iff It’=It" (L’).e) Finally after defining another finitely subadditive measure

with It:I(L) (see section 4) we have the following. If L2_L then L1 semi-separates L2 iff It’=’t on L2
for ItelR(L2).
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In the fourth and final section we define l-lattices. If x:F](o, L) (see sections four and two for

definitions) then there exists a :IR(r, L) st n:-<la (k) holds, and we prove in particular the following.a)
If L is an l-lattice as well as a delta lattice and I((*, L)=IR((, L) then k is complemented.b) If kl, I.-2 are

lattices such that L2_DL1, L a delta lattice, and for every laelR(c, L1) Ia*=l]. (I-.2) then I-1 semi-

separates I-2.
2)BASIC NOTATION AND TERMINOLOGY

In this section we introduce notation and terminology that will be used throughout the paper.We also

introduce background material for the readers convenience and references to further background

material.Our notation is consistent with Alexandrov 11 I, Frolik 141, Grassi 151, and Szeto 171.
Let X be an abstract set, and k a lattice of subsets of X st X, OeL.A delta lattice is one that is closed

under countable intersections and the delta lattice generated by !.. is denoted by (l).In addition I.. is

complement generated iff for every element LeL L=mLn’ where the LneL, n=l, 2 and the prime

will denote complement throughout.A tau lattice is one that is closed under arbitrary intersections, and the

tau lattice generated by I_ is denoted by ’tL .A(L) will denote the algebra generated by the lattice I...(k)
denotes the r-algebra generated by L.

Let L 1, L2 be two lattices such that L2_DL1 L1 semi-separates (ss) /2 if for L1 el 1, L2el-2, and

L1 L2=O then there exists eL st L 1-_L2 and L f-. =.
Let I(L) denote the set of non-trivial two valued {0, finitely additive measures on the algebra

generated by l, and let I((*, L) denote those elements of I(L) that are sigma-smooth on k, i.e. {Ln}L
Ln,l,f and IJ.l(o’*, L) then liml.t(Ln)=0. I(o’, I.) denotes those elements if I([.) that are sigma-smooth

on A(L) i.e if {An}uA(L), An,l,O and IJ.l(o’, L) then liml,t(An)=0.This is equivalent to countable

additivity of IJ- on A(L) .IR(L) will stand for the measures on A(L) that are L-regular, i.e. IJ.IR(L),
/J.(A)=sup/a(L), LL, A_DL and AA(L).This is equivalent to g being L-regular.just on L’.IR(o’, I.) will

denote those measures that sigma-smooth and L-regular on A(L).The obvious relations hold I(L)_DI(o,,

L)_DI(o, L)_DIR(o, I..) and I(L)_IR(L).The support of a measure S(I.l), IJl(I-) is defined as

S(I.t)={LL l.t(L)=I I.
A lattice is said to be disjunctiv if for xeX, LeL, x L then there exists eL st xe and Lc=.L

is said to be regular if for xeX, LzL, x L then there exists LI, L2e l st xeLl’ L2’L and

LI’mL2’=.I.. is .normal if for L1, L2et. and LIL2=O, there exists L3, L4eI.. st L3’L1, L4’72L3’
and L3’mL4’=O.I- is lindel.of if for {Lc}e[- oteA an arbitriary index set and Lot=O oteA then there

exists a contable subindexing such that Loti=Oi=l, 2 I.. is countably compact if for any {Ln}el..
and Ln=O n=l, 2 there exists a finite subindexing such that Lni=O i=l, 2 N.

Note. For l.tl, I.t2l(L) we write t.tl<_l.t2 (L) if I.t I(L)<_I.t2(L) for all LL.
By a premeasure is meant a set function defined on L st a) :.L--> {0, }, non trivial and

r()=0.b) rt(AB)=rt(A)rt(B) A, BL.c) rt is monotonic.The set of all such premeasures is denoted by
I-I(L).By I-l(, L) we mean those rt:I-[(L) st (An)=l all n implies that Anf) n=l, 2 and AnEL.
We note some measure equivalence of topologicial properties.

1) L is disjunctive iff for all x:X,/.txe|R(o, L) where//x is the point measure, i.e. /.tx(A)=l if xeA,

lax(A)=0 x A AeA(L).
2) L is regular iff -</.tl (L) ,/.tleI(L) implies S()=S(/al).

3) L is normal iff/.tEl(L),/.t 1,/.t2IR(L), -</.tl (L), and/.t<-/a2 (L) implies that I.t l=l.t2.
4) L is countably compact iff/.teI(L) implies that/.tEI(cy*, L).

5) L is lindelof iff n:El-l(cL L) implies S():J.Where S(rt)={ LELI rt(L)=l }.

The following facts will be used in this paper.There exists a one to one correspondence between prime

L-filters and elements of I(L), and a one to one correspondence between L-ultrafilters and elements of

IR(L).This correspondence is set up by letting/.t:I(L) and H={ LL I.t(L)=l }.Then H is a prime L-filter

and conversely if H is a prime L-filter there exists a measure I.tEI(L) associated with H st/.t(L)=l, iff LeH

.Also if Ia;IR(L) then H is an L-ultrafilter and conversely if H is an L-ultrafilter then there exists a
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ItelRfL) such that It(L) =1 iff L;H.In addition there exists a one to one correspondence between FI(L)
and all L filters F given by x--)F an L filter iff x(L)=l for IF, F an L filter.

DEFINITION 2. l._Let Itel(L) then for E st X_E It’(E)=inf It(L’) and the inf is taken over all
L;L and L’_E.

DEFINITION 2.2. Let Itsllk), then tslW(L.) if It(L’)=l LsI.. implies that there exists a el.. st

L’_ and It’()=l.
DEFINITION 2.3. Itel$(L) if for {An}eL An,l- and An=AsL then limit(An)=it(A).Note.

I(o*, L)_I$(L).

DEFINITION 2.4. Let Itel(o*, L) and for E st XzzE define It"(E):inf Zit(Li’) where the inf is

over all wLi’, i:l, 2 LieL, and wLi’zzE.
Next we consider various sets of measures defined on the algebra generated by a lattice L. For example

I(L), I(*, L), IR(L) or IR(cy, L).Denote such sets by l.Also consider the collection of sets H(L) where
H(L):{H(L) LeL], H(L)={ IJel la(L)=l }.Then the following hold the. a) H(AmB)=H(A)H(B) for
A, BL.b) H(AwB):H(A)wH(B) A, BeL
c) H(A’)=H(A)’ for A;L.d) If A_B then H(A)_H(B) A, BeL.e) If L is disjunctive (if necessary) then
H(A)_H(B) implies A_B, A, BeL.f) The collection H(L) is a lattice and H(A(L))=A(H(L)).
We will assume that in discussing H(L) for convenience, that L is disjunctive, although it will be clear

that this assumption is not always needed.
If I.tel then define a measure on A(H(L)) IeI(H(L)) by 12 (H(A)):It(A) for AeA(L). Conversely if

I]I(H(L)) define a measure on Itel by (A)=(H(A)) H(A)eA(H(L)). Then the following hold.

THEOREM 2.1. If L is disjunctive (if necessary) then there exists a one to one correspondence
between the sets and’l(A(L)) given by It<--> 12 .Further Itel is o-smooth or L-regular iff eI(H(L)) is

o-smooth or H(L) regular respectively.
If I=IR(L) we let H(L)=W(L).
If I=IR(o, L) we let H(L):W(o, L).

We define la* for Itl(, L) such that if X_E It*(E):infZit(Ai), AieA(L), wAizzE i:l, 2 As
is well known *is an outer measure, the * measurable sets form a o-algebra containing o(L) and the
restriction of It* to A(L) agrees with .

Further related material can be found in Camacho 12], Eid [3], and Huerta 16].
3) DEFINITIONS OF It’, It" AND THEIR BASIC PROPERTIES

In this section we examine two set functions It", It’ that are related to a measure I.tel(L) or Itl(o*, L)
.First we look at at It" which is genuine countably subadditive outer measure and is defined for all

l.tel(o*, L).We also define It’ which is finitely subadditive "outer measure" defined for Itel(L).We then
investigate some of the properties of these set functions and relationships that hold for them.We finally
consider conditions for one lattice to semi-separate another in terms of It’ and 12 another related set

function.

We first have the following theorem involving It" and It’.
THEOREM 3.1. a) Let I.tei(o*, L), It" is an outer measure on X. b)Let Sit" denote the It"

measurable sets where Itel(o*, L), then SIt"={E, X_E E_Ln st It(Ln)=l all n, or E’cLn where
for all n It(Ln)=l LneL}. c) For l.tel(L), It’ is a finitely subadditive "outer measure", d) Let Sit’ denote

the It’ measurable sets where l.tel(L), then SIt’={E, X_E land either E_I or E’_ where It()=l L,
eL }. e) If L is a regular lattice then S(it)=S(it’), where S(it’) is the support of the set function It’,
S (it’)=("l (LoLl It’(L)= 11.
We will only prove parts b and e since the other parts follow readily or are similiar in spirit.

Proof. b)Let Et.’.SIt" then It"(A)-It"(Ar"E)+It"(AE’) for all A st X_A .In particuliar let A=X
then l=it"(E)+it"(E’) and either It"(E)-l and It"(E’)=0 or It"(E’)-I and It"(E)-0.Assum It"(E)=0 then
It"(E)--infIt(Ln’), Ln’_E, n-l, 2 and LncL.Thus It(Ln’)=0 or (Ln)=l all n and

E’_Ln.Similiarly if It"(E’)-0 then E_Ln and (Ln)=l all n, n-l, 2
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Proof. e) Since It<_it’ on L then S(it)_S(it’). Suppose that S(it),S(it’).Let xeS(it)and x S(it’).Then
there exists a LgL st It’(L)=l, x L, and It(L)=().Since L is regular there exists LI, L2eL st x:Ll’,

L2’_L and LI’CL2’=O.It(L2’)=It’(L2’)=I, LIL2=X, It(L2)=0 therefore It(Ll)=it’(Ll)=l and

x L1.Thus x S(it), a contradiction. S(it)=S(it’).

DEFINITION 3.1. Let LB={LgLI It(L)=it’(L)=l
THEOREM 3.2. If Itl, It2gl(L) and if It l<_it2 (L) then Litl_Lit2.
PROOF._Let LlgLItl then Itl(L1)=itl’(Ll). If Itl’(Ll)=itl(Ll)=l then It2(Ll)=l and since

It2<it2 ’on L It2’(Ll)=l and It2(L1)=l.t2’(L1) and Ll:Lit2.Now suppose Itl(Ll)=itl’(Ll)=()
It2(Ll)=0 and It2’(Ll)=l.Then It2’(Ll)=infit2(f_,’)=l where f-,’_Ll.But since Itl<it2 (L) then It2_<itl

on L’ and 0=infitl(f.,’)=itl’(Ll)> infit2(f_,’)=it2’(Ll)=l a contradiction. Thus It2’(Ll)=0 and

It2(Ll)=it2’(L1)=0.1f Itl’(L1)=itl(L1)=0 and It2(Ll)=l then It2’(Ll)=l, but Bl’>_it2 (L’), a

contradiction.Thus It2(Ll )=B2’(L1 )=().This implies then that Lit2_Lit I.
THEOREM 3.3. Let lagl(k), then Sbt’t-=Lbt.
Proof. Let LeSI,.t’k then B’(E)=It’(LE)+It’(EL’) for all E st X_E.In particuliar for E=X

l=it’(L)+it’(L’).If It’(L’)=l then It’(L)=(), and since It’>it (t.) It(L)=0 and It(L)=it’(L)=0. If It’(L)=l
then It’(L’)=() which implies that Iu(L’)=0 since It=It’ on (I..’) or It(L)=l, and It(L)=it’(L)=l .Thus in

both cases L:LIt and LIt_SIt’L.
Conversely let L:LIt, Lit is contained in L.Need to prove that Sit’_Lit. For f_,el-l.t and L::)f_,,

assume that It(f_,)=0 for all such f_, .In particular it holds for f_,=L or It(L)=0.But since Let.it
It’(L)=0.it’(L)=infIt(Ll’)=() for LI’_L or there exists a LI:I- st It(Ll’)=0 or It(Ll)=l, L’:DL1 thus

LSIt’.lf It(L)=l L_L and LgSIt’.Thus SIt’L=l..It.
COROLLARY 3.1. LIt is a lattice.

PROOF. Since by theorem 3.3 SIt’L=l..it, SIt’, I.. are lattices and the intersection of two lattices

is a lattice the result follows.

THEOREM 3.4. Let Itl((*, [.).Then It_<it _<it (k) and It _<it it ([-’).
PROOF._It is clear that It"Nit=it’([-’) and that It"Nit’everywhere.Thus we must just show that

It_<it" ([-).Assume not then there exists Le[- st It(L)=l and It"(L)=0.Thus Ill"(L)=infZIll(Li’)=0 and thus

there exists uLi’_DL i=l, 2 st LieL and It(Li’)=0 all or It(Li)=l all i.Then L’Liand
L(cLi)=D.Since It(L)=l and It(Li)=l all i, then It(LcLi)=l.We can assume without loss of generality

that {LcLi}$O, then since It:I(o*, [-), 0=limit(LLi)=l, a contradiction.Thus It(L)=0 and It_<it _<it

(L).
THEOREM 3.5. If Itgl(*, L) and if It=it’=it" on L then I.teIR(, [-).

PROOF. Let It(L’)=l LgL then It(L)=0 and It’(L)=0.Thus there exists a f_,e[- st f_,’L and

It (f_,’)=0 or It(f_,)=l and L’_ f_,.Therefore IteIR(, L).

THEOREM 3.6. Let I.tel(c*, [-) then It’=It" ([’) iff It:l$(L).
PROOF. Let ItsI(*, [) and It’=It" ([-’).Assume that It IS(L) and let An,[,A, A, Anel- such

that It(An)=l all n and It(A)=0.Then It(A’)=l It(A’)=l.t’(A’)=it"(A’)=l by hypothesis.But

It"(A’)=it"(uAn’)=Y,it(An’)=0 since It(An’)=0 all n, a contradiction. Ittl$(L).

Conversely let Itl$([-) and assume that It"<it=it’ on [-’.Let It"(L’)=0 then there exists kaLi’L’ L,

Lie[- i=l, 2 st It(Li’)=0 all or It(Li)=l all i, and L_Li, also L=(LuLi)

.We can assume without loss of generality that {LuLi},I,L then It(L)=infit(LuLi)=infl=l since

l.ttI$(L).Then It(L’)=it’(L’)=0 thus It’=It" on L’.
We now look at another class of measures we defined previously, IW([-).

THEOREM 3.7. If It:l$(L) and if the lattice L is cg the ItelW(/).
PROOF. Suppose that L:L and It’(L’)=it(L’)=l.Then from theorem 3.6 Itel$(L) implies It’=it"

on L’, hence I.t"(L’)=l.Since [ is cg then L’=uLi LiL i=l, 2 and l=l,t"(voLi)<_g_.EI,t"(Li), since It"
is an outer measure.Thus It"(Li)=l for some i.Then because It’>It" ([)It’(Li)=l,t"(Li) L’:mLi.Thus

ItelW(k).
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THEOREM 3.8. IWIL)_21R(L) and if L is normal IR(L)=IW(L).

PROOF. Let IteIR(L) and let It(L’)=l L’eL’.’I’hen since IteIR(L) there exists a f_,ek st L’L" st

It (f_,)=l and since It’>it (L)It’()=l and thus ItIW(L).
Assume now that L is normal and let It:IW(L) and IJ(L’)=I L:L .Then since It:IW(L) It’(f_,)=l and

L’_, uL and Lf_,=O.Since L is normal there exists L1, L2t’L st LI’_L L2’_f-, and

LI’L2’=O.It(L2’)=I since L2’_ and It’()=l implies that IJ.’(L2’)=It(L2’)=I, thus It(L2)=0, and

since Llt,,)L2=X, then It(Ll)=l and L’_LI implies that laeIR(L).

REMARK. By theorems 3.7 and 3.8 if k is cg and normal then IteI$(k) implies It:IR(, k).

THEOREM 3.9. If k is cg and ItI(c*, L’) implies IteIR(L).
PROOF. Result is well known see references Camacho 12], Eid 13], Grassi 15], and Szeto [7].

THEOREM 3.10. If IteI(*, L’) and L is cg then It=la’=it" on k’.

PROOF. Since Itcl(cy*, L’) then l.tel(k) and la=it’ on L’.Assume that It(L’)=it’(L’)=l and since

L is cg L’=Li L, LicL i=l, 2 Then It"(L’)_<Zit"(Li) and assume that It"(Li)=0 all i, then It(Li)=0

all i, and It(Li’)=l all i.Since L=Li’ i=l, 2 then LrL’=L(cLi’)={D.We can assume then,

without loss of generality that {L’Li’},I, .Since l.tc(*, L’), limit(L’Li’)=0. But It(L’)=l

It(Li’)=l, a contradiction.Thus It"(Li)=l for some i.Since L’_Li by the monotone nature of 1.1.", It"(L’)=l

and It=l.t’=it" on k’.

We now introduce a definition preparatory to presenting our final theorem in this section, relating semi-

separation of lattices.

DEFINITION 3.2. Let ItI(l_) and Xz:)E.We define t (E)=infit(L) L_E and Lgk.

Note that It.t" is a finite subadditive "outer measure".
THEOREM 3.11. Let / and L2 be lattices of substs of X st L2_/l.lf l semi-separates /2 then

=it’ on L2 for IttIR(/1 ).Conversely if for every l.ttIR(I- /Tt =It’ on l2, then I.. semi-separates /2.

PROOF_. Let L1 semi-separate /2, and look at It’(L2)=infbt(Ll ’) LI’_L2 LIC/I and L2cL2.
Then since LlL2=and L1 semi-separates /2 there exists f-,lCkl st ,ILI= and f-,lL2, or

LI’_ _.l.Thus infit(Ll’)>infit(l) ,I_L2 LI’_L2 or It’>t.t-.Now look at 17t (L2)=infit( 1) IL2
f-, t:l 1, L2c/2.Assume 17t (L2)=0 then there exists _L2 t:l.. st It )=0 or It (f_, 1’)= l.Since
ItcIR(kl) there exists L3cLI st l’_L3 It(L3)=l or It(L3’)=0 L3’_ l_L2 or 17t(L2)=l.t’(L2)=0. Thus

17t=it’ on 12.
Conversely let 17t=lt’ on /2 for all ItcIR(LI) and assume that L1 does not semi-separate [.2.Then

there exists LI:ll L2c12 st LlrL2= andf__,lLl for all 11...1 st f_,l_L2.Look at H={ f.,ll
tl and f_, 1-L2 }.Then H has the finite intersection property, and thus there exists a filter and thus an

ultrafilter and its associated measure Itt:IR(/l) st It(f_, 1)=1 LI’t:H and since LI1:, bt(L1)=l.Now

look at It’(L2). Since LIL2= then LI’_L2 and since It(L1)=l It(Ll’)=0 and thus It’(L2)=0.Also

I].(L2)=inf/.t(L4) L4_L2 and L4cL1.Then since every such L4 is a member of H and thus

t (L2)=infit(L4)= 1, a contradiction, l semi-separates/2.

4) PROPERTIES OF I-LATTICES AND THEIR RELATIONSHIP TO SEMI-SEPARATION
In this section we define the notion of an I-lattice and look at necessary and sufficent conditions for

an I-lattice to exist such as countable compactness, disjunctiveness and lindelof property to hold.We

finally investigate the semi-separation of two lattices / 1,/2 with l1 an I-lattice in terms of outer

measures associated with/.tcI(*, / ).

DEFINITION 4.1. I. is an I-lattice iff for every :cFI(, L) there exists a IttIR(,/) st :<_it (/).

DEFINITION 4.2. / is replete iff for every I.ttIR(, L) S(t.t):.
The results of theorem 4.1 are well known see references Szeto [7]. We prove part d in a more straight

forward manner than the above reference shows.

THEOREM 4.1. a)If L is an I-lattice, and if / is replete then L is lindelof, b)If I.. is a countably

compact lattice then 1. is I-lattice. c) If k is a disjunctive laitice and if k is lindelof then [. is an I-lattice. d)

Suppose L is disjunctive, then IR(o, L), "tW(o, L) is lindelof iff L is an I-lattice.
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PROOF. Of pan d)Assume that t- is disjunctive. First W(o, L) is lindelof iff "tW(o, L.), thus it is

sufficent to prove that Wlo, t-) is lindelof.Look at fi:cH(o, W(o, k)) then projecting down look at

:cI-l(o, L) :(L)=:(W(o, t-)) for Lcl.Since L is disjunctive IR(o’, t-)_{lax, xcX} and if W(o, Ln),l,o,
then Ln,l,O.Since L is an l-lattice there exists a iaclR(o, I..) st n:<la (L). Projecting upward

W(o’, t-J) and fi:<l.Tt (W(o, L)).Since lacS(l) S(),O. Therefore W(o, L) is lindelof and thus so is

W(o, k).

Conversely if "tW(o, L) is lindelof then so is W(o, L).Let ncFl(o, t-), then projecting upwards

h:cH(o, W(o, t.)) and fi:(W(o, L))=rt(L) Lgt..Since W(o, t-) is lindelof S(fi:),O and there exists a

btcS(fi:) st btclR(o’, t-) and if fi:(W(o, L))=rt(L)=l LcL. then laeW(o, L) and l.t(L)=l.Thus :<la (L.) and

t- is an I-lattice.

THEOREM 4.2. Let t- be an I-lattice, and also a delta lattice then I(o*, t-)=IR(o, t-) implies / is

complemented.

PROOF. Assume that I_ is not complemented then for some Let. L’e; L.Conside F={ 1
_L’}, then F has the finite intersection property and associated with F is a filter :eFl(I.). In addition,

since t. is delta, then rtcFl(o, L.) and L’ is not cg (otherwise L’ would belong to I.., which would

contradict the hypothesis). Since k is an l-lattice there exists laelR(o, t-) st t<la (t-) and since I(o*,

t-)=lR(, t-) then laclR(o, t.’) and la(L’)=l But since laelR(o, L), l.t is associated with an t.
ultrafilter and thus la(L)=l. Thus L is complemented.
We finally prove our last theorem in this section involving semi-separation, l-lattices and bt*, .

THEOREM 4.3. Let L.I, 12 be lattices of subsets of X st t-2_t.l, t.1 a delta I-lattice, and for

every I.tclR(o’, L1) la*(L2)=lTt (L2) L2cL2, then L1 semi-separates 12.
PROOF. Suppose t-I did not semi-separate 12 then there exists Llet.l, L2cl-2 st LIrL2=O,

but there does not exist a Ll’ct-I st IL2 and LI l=O.Look at H={ 11 let- I_-L)L2} then H

has the finite intersection property and is a filter base and so can be extended to a filter.Since t-I is delta,

there exists :eFI(o, t.) associated with H .In addition since t.I is an l-lattice there exists a I.telR(o’, L.I) st

a:<l.t on L 1.

Now look at la*(L2)=lTt(L2). 17t(L2)=l since la.(l)=l all IeLI st IL2, thus l,t*(L2)=l.ln
addition l,t(L1)=l.t*(Ll)=l since L1 has non-empty intersection with H, I.t is associated with an L-
ultrafilter and the outer measure la*=bt restricted to A(Ll).Thus l=l.t*(L2)<l.t*(Ll’)=t,t(Ll’)= 0, a

contradiction .Therefore t.I semi-separates L2.
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