OPERATORS ACTING ON CERTAIN BANACH SPACES OF ANALYTIC FUNCTIONS

K. SEDDIGHI, K. HEDAYATIYAN and B. YOUSEFI

Department of Mathematics, Shiraz University

(Received January 14, 1993 and in revised form September 21, 1993)

ABSTRACT. Let \mathcal{X} be a reflexive Banach space of functions analytic on a plane domain Ω such that for every λ in Ω the functional of evaluation at λ is bounded. Assume further that \mathcal{X} contains the constants and M_z , multiplication by the independent variable z, is a bounded operator on \mathcal{X} . We give sufficient conditions for M_z to be reflexive. In particular, we prove that the operators M_z on $E^p(\Omega)$ and certain $H^p_a(\beta)$ are reflexive. We also prove that the algebra of multiplication operators on Bergman spaces is reflexive, giving a simpler proof of a result of Eschmeier.

KEY WORDS AND PHRASES. Banach spaces of analytic functions, Smirnov domain, bounded point evaluation. 1991 SUBJECT CLASSIFICATION. Primary 47B37; Secondary 47A25.

1 INTRODUCTION.

Let Ω be a bounded domain in the complex plane C. Suppose \mathcal{X} is a reflexive Banach space consisting of functions that are analytic on Ω such that $1 \in \mathcal{X}$, for each λ in Ω , the functional $e(\lambda): \mathcal{X} \longrightarrow C$ of evaluation at λ given by $e(\lambda)(f) = \langle f, e(\lambda) \rangle = f(\lambda)$ is bounded, and if $f \in \mathcal{X}$ then $zf \in \mathcal{X}$. Note that the last condition allows us to define $M_z: \mathcal{X} \longrightarrow \mathcal{X}$ by $M_z f = zf$, $f \in \mathcal{X}$. It is easy to see that M_z is actually a bounded operator on \mathcal{X} . If \mathcal{X} is a Hilbert space, the operator M_z and many of its properties have been studied in Shields and Wallen [1]; Bourdon and Shapiro [2]. We would like to give some sufficient conditions so that the operator M_z becomes reflexive.

Let Ω be a bounded open set in C and let p be a real number with $1 \leq p < \infty$. We denote by $L^p(\Omega)$ the L^p -space of the 2-dimensional Lebesgue measure restricted to Ω . The space of analytic functions on Ω is denoted by $H(\Omega)$ and as usual $H^{\infty}(\Omega)$ is the Banach space of all bounded functions analytic on Ω equipped with the supremum norm. Each function $f \in H^{\infty}(\Omega)$ induces a bounded operator $M_f: L^p_a(\Omega) \longrightarrow L^p_a(\Omega), g \longrightarrow$

fg, where $L^p_a(\Omega)$ is the subspace of $L^p(\Omega)$ consisting of all analytic functions. This space is called the *Bergman space*.

In this article we shall prove that the algebra $B = \{M_f | f \in H^{\infty}(\Omega)\}$ is reflexive. We give a shorter proof of a result of J. Eschmeier [3] in case Ω is a plane domain.

2 PRELIMINARIES.

In this section we make a few definitions and set our notation straight. If G is a bounded domain in the plane, the Carathéodory hull (C-hull) of G is the complement of the closure of the unbounded component of the complement of the closure of G. It can be described as the interior of the set of all points z_0 in the plane such that $|p(z_0)| \le \sup\{|p(z)| : z \in G\}$ for all polynomials p. An open set G is called a *Carathéodory* domain if it is equal to the component of the Carathéodory hull of G that contains it.

For the algebra $\mathcal{B}(\mathcal{X})$ of all bounded operators on a Banach space \mathcal{X} , the weak operator topology (WOT) is the one in which a net A_{α} converges to A if $A_{\alpha}x \longrightarrow Ax$ weakly, $x \in \mathcal{X}$.

A complex valued function ϕ on Ω for which $\phi f \in \mathcal{X}$ for every $f \in \mathcal{X}$ is called a *multiplier* of \mathcal{X} and the collection of all these multipliers is denoted by $\mathcal{M}(\mathcal{X})$. Because M_z is a bounded operator on \mathcal{X} , the adjoint $M_z^* \quad \mathcal{X}^* \longrightarrow \mathcal{X}^*$ satisfies $M_z^* e(\lambda) - \lambda e(\lambda)$. In general each multiplier ϕ of \mathcal{X} determines a multiplication operator M_{ϕ} defined by $M_{\phi}f = \phi f, f \in \mathcal{X}$. Also $M_{\phi}^* e(\lambda) = \phi(\lambda)e(\lambda)$. It is well known that each multiplier is a bounded analytic function, Shields and Wallen [1] Indeed $|\phi(\lambda)| \leq ||M_{\phi}||$ for each λ in Ω . Also $M_{\phi}1 = \phi \in \mathcal{X} \subset H(\Omega)$. So ϕ is a bounded analytic function

Recall that if \mathcal{E} is a subalgebra of $\mathcal{B}(\mathcal{X})$ containing the identity operator, then $\operatorname{Lat}(\mathcal{E})$ is by definition the lattice of all invariant subspaces of \mathcal{E} , and Alg $\operatorname{Lat}(\mathcal{E})$ is the algebra of all operators B in $\mathcal{B}(\mathcal{X})$ such that $\operatorname{Lat}(\mathcal{E}) \subset \operatorname{Lat}(B)$ We say that \mathcal{E} is *reflexive* if $\mathcal{E} = \operatorname{Alg Lat}(\mathcal{E})$ Obviously a reflexive algebra \mathcal{E} is (WOT)-closed An operator A in $\mathcal{B}(\mathcal{X})$ is said to be *reflexive* if Alg $\operatorname{Lat}(A) = W(A)$, where W(A) is the smallest subalgebra of $\mathcal{B}(\mathcal{X})$ that contains A and the identity I and is closed in the weak operator topology.

Let $A \in Alg \ Lat(M_z)$ and let \mathcal{M} be a weak star closed invariant subspace of M_z^* in \mathcal{X}^* . Then $^{\perp}\mathcal{M} \in Lat(M_z)$ and hence $^{\perp}\mathcal{M} \in Lat(A)$. Therefore, $(^{\perp}\mathcal{M})^{\perp} \in Lat(A^*)$. Since \mathcal{M} is weak star closed, $\mathcal{M} \in Lat(A^*)$. Now the one-dimensional span of $e(\lambda)$ is invariant under M_z^* . Therefore, it is invariant under A^* . We write $A^*e(\lambda) = \phi(\lambda)e(\lambda), \ \lambda \in \Omega$. So < f, $A^*e(\lambda) >= \phi(\lambda)f(\lambda); \ \lambda \in \Omega$. Using the Hahn-Banach theorem we see that the linear span of $\{e(\lambda)\}_{\lambda \in \Omega}$ is weak star dense in \mathcal{X}^* . Thus $\phi \in \mathcal{M}(\mathcal{X})$ and $A = M_{\phi}$.

3 REFLEXIVITY.

In this section we consider a Banach space of functions analytic on a Carathéodory domain and give sufficient conditions for the operator of multiplication to be reflexive. A circular domain is also considered.

THEOREM 1. Let Ω be a Carathéodory domain each point of which is a bounded point evaluation for a reflexive Banach space \mathcal{X} of functions analytic on Ω which contains the constant functions and admits M_z as a bounded operator. Furthermore, if $||M_p|| \leq C||p||_{\Omega}$ for every polynomial p, then M_z is reflexive.

PROOF. Let $A \in \text{Alg Lat}(M_z)$. Then $A = M_\phi$ for some multiplier $\phi \in H^\infty(\Omega)$. Let $\{p_n\}$ be a sequence of polynomials such that $\sup||p_n||_{\Omega} \leq M$ for some constant M and $p_n(z) \longrightarrow \phi(z), z \in \Omega$. Then $||M_{p_n}|| \leq C||p_n||_{\Omega} \leq CM$. Since \mathcal{X} is reflexive, the unit ball of \mathcal{X} is weakly compact. Therefore, the unit ball of $\mathcal{B}(\mathcal{X})$ is (WOT) compact. We may assume, by passing to a subsequence if necessary, that $M_{p_n} \longrightarrow \mathcal{X}$ (WOT) for some operator X. Thus $M_{p_n}^*e(\lambda) \longrightarrow \mathcal{X}^*e(\lambda)$ in the weak star topology. On the other hand $M_{p_n}^*e(\lambda) = p_n(\lambda)e(\lambda) \longrightarrow \phi(\lambda)e(\lambda) = M_{\phi}^*e(\lambda)$ in the weak star topology for every $\lambda \in \Omega$. Therefore, $\mathcal{X}^*e_{\lambda} = M_{\phi}^*e_{\lambda}$ and thus $\mathcal{X}^* = M_{\phi}^*$. Hence $\mathcal{X} = M_{\phi}$ on \mathcal{X} , which implies that $A \in W(M_z)$ and M_z is reflexive. \Box

Now we use the technique of the proof of Theorem 1 to give a short proof of a result of Eschmeier [3]. We let $B = \{M_f | f \in H^{\infty}(\Omega)\}$, where Ω is a bounded domain and M_f acts on $L^p_a(\Omega)$.

THEOREM 2. The algebra B is reflexive.

PROOF. Clearly $B \subseteq Alg Lat(B)$. Let $A \in Alg Lat(B)$. Because the one dimensional span of $e(\lambda)$ is invariant under M_f^* for all f in $H^{\infty}(\Omega)$, it is invariant under A^* , and therefore $A = M_{\phi}$ for some multiplier ϕ . Thus B is a reflexive algebra. \Box

Next we give a few examples of Banach spaces satisfying the hypothesis of Theorem 1.

EXAMPLE 3. Let Ω be an arbitrary simply connected Smirnov domain. Let $1 . Define <math>E^p(\Omega)$ to be the set of all analytic functions f on Ω such that there exists a sequence of rectifiable Jordan curves C_1, C_2, \cdots in Ω , tending to the boundary in the sense that C_n eventually surrounds each compact subdomain of Ω , such that $\int_{C_n} |f(z)|^p |dz| \leq M < \infty$. For a good source on $E^p(\Omega)$ see Duren [4, Chapter 10]. Every function f of class $E^p(\Omega)$ has a nontangential limit almost everywhere on $\partial\Omega$, which does not vanish on a set of positive measure unless $f(z) \equiv 0$. Furthermore, $\int_{\partial\Omega} |f(z)|^p |dz| < \infty$. It is convenient to identify $E^p(\Omega)$ with its set of boundary functions. Thus $E^p(\Omega)$ is a closed subspace of $L^p(\partial\Omega)$ which contains the set of all polynomials, and hence its closure. Hence $E^p(\Omega)$ is a reflexive Banach space.

Clearly M_z is bounded and $||M_p|| \leq ||p||_{\Omega}$ for all polynomials p. Now we show that

each point of Ω is a bounded point evaluation for $E^p(\Omega)$ For a fixed z in Ω , choose C > 0 such that $dist(z,\partial\Omega) \ge C$. Let $f \in E^p(\Omega)$ Then $f^p \in E^1(\Omega)$ and it has a Cauchy representation

$$f^p(z)=rac{1}{2\pi\imath}\int_{\partial\Omega} rac{f^p(\varsigma)}{arsigma-z}darsigma$$
 , $z\in\Omega$

Therefore $|f(z)|^p \leq (1/2\pi C)||f||^p$ Thus each point of Ω is a bounded point evaluation for $E^p(\Omega)$. Finally, by Theorem 3.1, M_z is reflexive

Further examples of Banach spaces satisfying the hypothesis of Theorem 1 will be presented We also deduce that M_z acting on these spaces are reflexive. We begin with a definition.

DEFINITION 4. Let $1 and let <math>\{\beta(n)\}$ be a sequence of positive numbers with $\beta(0) = 1$. We consider the space of sequences $f = \{\hat{f}(n)\}$ such that

$$||f||_p^p=\sum_{n=0}^\infty |\widehat{f}(n)|^p [eta(n)]^p<\infty.$$

We shall use the formal notation $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ for $z \in \mathbf{D}$ the unit disc in C (See Shields [5] for p=2.). Let $H^p(\beta) = \{f|f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n; ||f||_p < \infty\}$ and $H^p_a(\beta) = \{f \in H^p(\beta) | f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \text{ is convergent in } \mathbf{D}\}.$

REMARK 5. Define the σ -finite measure μ on the positive integers by $\mu(K) = \sum_{n \in K} \beta(n)^p$, $K \subseteq \mathbf{N}$. Because $H^p(\beta) \cong L^p(\mu)$ we conclude that $H^p(\beta)$ is indeed a reflexive Banach space.

REMARK 6. If $\{\beta(n+1)/\beta(n)\}$ is bounded, the operator of multiplication by z is a bounded operator on $H^p(\beta)$. Indeed $||M_z|| = sup_n \frac{\beta(n+1)}{\beta(n)}$.

In the following examples let q be the conjugate of p(1/p + 1/q = 1). EXAMPLE 7. Let $\{1/\beta(n)\} \in \ell^q$. If $f \in H^p(\beta)$ and $\lambda \in \mathbf{D}$, we have

$$|f(\lambda)| = |\sum_{n=0}^{\infty} \hat{f}(n)\lambda^{n}| \le (\sum_{n=0}^{\infty} |\hat{f}(n)|^{p} [\beta(n)]^{p})^{1/p} (\sum_{n=0}^{\infty} \frac{|\lambda|^{nq}}{\beta(n)^{q}})^{1/q}.$$
 (1)

Therefore, f is analytic and $||f||_{\mathbf{D}} \leq ||\{\frac{1}{\beta(n)}\}||_{q} ||f||_{p}$. We conclude that $H_{a}^{p}(\beta) = H^{p}(\beta) \subset H^{\infty}$. Furthermore, each point of **D** is a bounded point evaluation for $H^{p}(\beta)$ and also convergence in $H^{p}(\beta)$ implies uniform convergence on **D**.

EXAMPLE 8. In Example 7 assume $\beta(n) \ge 1$ for all n. In this case, it follows from (1) that $||f||_K \le C||f||_p$ for any compact $K \subset \mathbf{D}$, where C depends on K.

EXAMPLE 9. Let p > 1. Also suppose that $\sup_{n} \frac{\beta(n+1)}{\beta(n)} = 1$ (e.g. $\beta(n) = 1$ or $\beta(n) = 1+1/n$). It can easily be seen that $\overline{\mathbf{D}} = \sigma(M_z)$. Since M_z is a contraction, $\overline{\mathbf{D}}$ is a spectral set for M_z and $||M_p|| \leq ||p||_{\mathbf{D}}$ for every polynomial p. By Theorem 1, M_z acting on $H_a^p(\beta)$ is reflexive.

The domains considered in Theorem 1 were Carathéodory domains. We now extend the conclusion of this Theorem to a circular domain, that is, any domain obtained by removing a finite number of disjoint subdiscs from the open unit disc. In Seddighi and Yousefi [6] we have proved the analogue of the following theorem for a Hilbert subspace of $H(\Omega)$. For the proof combine the techniques of the proof of Theorem 1 with Seddighi and Yousefi [6, Theorem 5.1].

THEOREM 10. Let Ω be a circular domain each point of which is a bounded point evaluation for a reflexive Banach subspace χ of $H(\Omega)$ which contains the constants and admits multiplication by the independent variable z, M_z , as a bounded operator. Furthermore, suppose that $||M_p|| \leq ||p||_{\Omega}$ for every polynomial p. Then M_z is reflexive.

We present an example of a Banach space satisfying the hypothesis of Theorem 10. **EXAMPLE 11.** Let Ω be a circular domain and $1 . Since <math>L_a^p(\Omega)$ is closed in $L^p(\Omega)$, $L_a^p(\Omega)$ is reflexive. By Lemma 3.7 of Garnett [7] every point of Ω is a bounded point evaluation for $L_a^p(\Omega)$. It is also clear that $||M_p|| \leq ||p||_{\Omega}$ for every polynomial p. By Theorem 4 the multiplication operator M_z on $L_a^p(\Omega)$ is reflexive.

ACKNOWLEDGEMENT. Research of the first author was partially supported by a grant (no. 67-SC-520-276) from Shiraz University Research Council.

REFERENCES

- 1. SHIELDS, A.L. and WALLEN, L. The Commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20(1971), 777-788.
- BOURDON, P.S. and SHAPIRO, J.H. Spectral synthesis and common cyclic vectors, Michigan Math. J. 37 (1990),71-90.
- 3. ESCHMEIER, J. Multiplication operators on Bergman spaces are reflexive, Operator Theory : Advances and Applications 43 (1990), 165-184.
- 4. DUREN, P. H^p Spaces, Academic Press, New York 1972.
- 5. SHIELDS, A. Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No.13, Amer. Math. Soc., Providence, R. I., 49-128.
- 6. SEDDIGHI, K. and YOUSEFI, B. On the reflexivity of operators on function spaces, Proc. Amer. Math. Soc. 116(1992), 45-52.
- 7. GARNETT, J.B. Bounded Analytic Functions, Academic Press, New York 1981.