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ABSTRACT. In this paper, we prove two general theorems about Hyers-Ulam stability of

functional equations. As particular cases we obtain many of the results published in the last ten

years on the stability of the Cauchy and quadratic equation.
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1. INTRODUCTION. We consider the functional equation

g[F(x,y)] H[g(x),g(y),g(Rl(x,y)), .,g(R,(x,y))] (1.1)

where

F: S x S-S, R,: S x S-S and H:X x X X’X

are given functions, S is a set, (X,d) is a complete metric space and g:S---X is the unknown

function.

Together with equation (1.1) we consider the functional inequality

d(f[F(x,y)l,H[.f(x),f(y),f(Rl(X,y)), ,f(R,(x,y))]) <_ p(x,y) (1.2)

where p: S x S--R +.
The aim of the present paper is to prove some general results of stability in the sense of

Hyers-Ulam for the equation (1.1). This means to prove that, under suitable conditions on the

functions involved, "near" any solution of the inequality (1.2) there exists a solution of the

equation (1.1). The word "near" means that the distance of the solution of the equation from the

solution of the inequality is explicitly evaluated through the function p. We point out that it is

not necessary to know in advance either the form or the existence of any solution of (1.1).
The results we will prove contain as special cases many of the results of stability for the

Cauchy and quadratic equation, published in the last ten years. The techniques we use are a

generalization of those developed in [1].
2. MAIN RESULTS.

We introduce some notations and fix some assumptions on the functions involved

throughout the paper.

Define G(x): F(x,x) and for each non-negative integer n let G" denote the n-th iterate of G; if
G is invertible, G-" denotes the n-th iterate of G-1.
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We suppose that all functions R, are constant on the diagonal of S x S, i.e.,

R,(x,x)=a, ES, forx(Sandz=l,. .,p.

Moreover we assume that G and R, commute:

(2.1)

R,(G(x),G(y) G(R,(x,y)), for i= 1,-..,p. (2.2)

Note that conditions (2.1) and (2.2) iInply that each a, is a fixed point of G:G(a,)=a,,
z=l,...p.

For every z (z1, ,z,), z, X, we write

Kz(u): H(u,u, zl, .,%)= H(u,u,z)

and assume
Kz(X X and K, invertible. (2.3)

By K, j Z, we denote that j-th iterate (positive or negative) of K,. In the following, when it is

clear from the context, we shall omit the subscript z.

For a function h:S---X, we denote by h(a) and by h(R(x,y)) the p-tuples (h(a),...,h(a,))and
(h(R(x, y)), ., h(R,(x, y))) respectively.

For a function f: S--X we define for all x,y S

5(x,y): d (f[F(x,y)l,H[f(x),f(y),f(R,(x,y)), ,f(R,(x,y))])
and A(x): 5(x,z).

PROPOSITION 1. Let f:SX be a function and assume the following conditions are

satisfied:

(i) defined K(u): g[u,u,.f(a)], there exists a strictly increasing superadditive function

k:R +-R + such that

Vu, v e Z d(K(u),g(v)) k(d(u,v)) (2.4)

(ii) the function H is continuous and for every u X

where

H[K-’(u),K-’(u),K-’(I(a))] K-’[H(u,u,f(a))]

K-’(j(a)) (K- (f(a,,)), ,K- ’(f(%)).

(2.5)

If the series k-’*[A(G"-’(x))] converges for every z ( S, then the sequence
n=l

q.(x): K-’[f(G"(x))]

converges for every x e S and defined g(x): l,,im q,(x), we have

g[G(x)] H[g(x), g(x), g(a)].

Moreover the following conditions hold

d(g(x),f(x))<_ k-"[A(G"-’(x))], xCS, (2.8)

lira It’-" (K(o) [g(x)])= g(x), x S. (2.9)

The function g is the only solution of (2.7) satisfying (2.8) and (2.9).
PROOF. As fit step we vute the distance between f[G"(x)] and K"[f(x)]. We

introduce the following notations:

k,(t): =k(t),k,(tl,..-,t,,): =k[t,Tk.,_,(t,,...,t,_,)],t,a +, m> 1.
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We prove by induction that the following inequality

d( f[G"( z)], K"[f x)]) A(G l(x)) t_ n-I(A(X), ,A(Gn- 2(x)))
holds. Take n 2; we have

(2.10)

d (f[G(x)], K:[f(x)])<_ d (f[G:(x)], K[f(G(x))])+ d (K(f[G(x)]), K[f(x)]) <_

< d (f[a(x)], H[f(G(x)), f(G(x)), /(a)])+ k [d (f[G(x)], K[f(x)])]
A(G(z))+ [d (f(G(z)), H[f(x), f(z), /(a)])] A(G(z))+

Assume now (2.10) is true for n- 1; we obtain

d (f[G"(x)], K"[f(x)])<_ d (f[G"(x)], K[f(G"-I(X))])--
"3t- " (I[f(Gn-l(x)>], /’"[f((.))])= (en-l(z)) + [d( f[Gn-l(z)], /<n- ’[f(z)])]
A(G"- + {(a--()) + ,_ [a(x), , a(a-- ())]}
a(a"-1())+ ,_l[a(),..., (a"-())].

(To prove the lt inequality, remember that k is increasing).
In the next step we use inequity (2.10) to show that {q,(x)} is a Cauchy sequence; thus by the

completeness of X it is convergent.
Let n > m, then

d (q,,(x), q,.,,(x))= d (K-"[f(G"(x))], K-’[f(GO’(x))])=

k-" [d(f[G"(x)], K"-"[f(G"(z))])t
since k is increasing and superadditive, k-" is increasing and subadditive, so we get by (2.10)

d (q,(x), q,(x))< k {A(G"-’(x))+ k [A(G’(x)), -,A(G"-2(x))]} _<

n

j=m+l

the convergence of the series k-"[A(G"-’(x))] implies that {q,(x)} is a Cauchy sequence for

every x E S. n

Define g(x): =/.irn q.(x); we have

d (K-"[f(G"+’(x))], U[K-"(f(a"(x))), K-"(f(a"(x))), K-"(f(a))])-
---, d (giG(x)], gig(x), g(x), g(a)])for n--o

(note that G"(a,) a,); on the other hd we get

d (K-"[f(G"+(x))], g[g-"(f(G"(x))), g-"(f(G"(x))), K-"(](a))])=
d (g-"[f(G"+(x))], g-"[g(f(G"(x)), f(G"(z)), f(a))])
k-" [d (f(G"+ (x), H(I(G"(x)), f(G"(x)), f(a)))] k-" [&(G"(x))]0

for n; thus we obtain (2.7).
d (q,(x), f(x))= d (K-" [f(G"(x))], f(x))= k-" [d (f(G"(x)), K"[f(z)])]

n
< -n{A(Gn- l(x)) - ]n-I[A(x), ,A(Gn- 2(x))]} -- Z k- 3[A(G.1- l(x))],

3=1
taking the limit as n goes to infinity we have (2.8).
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Assume h is a function satisfying (2.8), i.e.,

d (h(), f())_< --"
Then for every s E N we have

and, by (2.4),

xES.

d(h[G’(x)],f[G’(x)])< k-"[A(G"+’-’(x))l
n=l

k" {d (K-S[h(GS(x))], K-S[f(G’(x))])} < k-’* [/(en+s-l(x))],
n=l

d (K- S[h(G’(x))], K- s[f(G’(x))]) <

Taking the limit as s---oc, we get
K-

k-m[A(Grn-l(x))]
m=s+l

xES. (2.11)

Since g is a solution of (2.7), we have

giG’S(x)] K,(o)[g(x)] and K-’{g[G"(x)]} K-"{K(,,)[g(x)]};
by (2.11), since g satisfies (2.8), we get K-"{K(o)[g(x)]}---,g(x), i.e., (2.9).
If h is a solution of (2.7), then K-"{h[G"(x)]} g-"{g,(o)[h(x)]} and if h satisfies (2.9), we get

g-"{g,(o)[h(x)]}---h(x). This and (2.11)imply h g. 1"!

A similar result can be obtained under different assumptions on the functions G and K.
PROPOSITION 2. Let f:S---.X be a function and assume the following conditions are

satisfied:

(i) defined g(u): H[u,u,f(a)], there exists a strictly increasing subadditive function

k: I + ---+1 + such that

Vu, v X d(K(u),K(v)) k(d(u,v)) (2.12)

(ii) the function H is continuous and for every u X

where

H[K(u), K(u), K(f(a))] K[H(u, u,/(a))]

K(f(a)) (K(f(a,.,)), ,K(f(ap))).

(2.13)

(iii) the function G is invertible.

If the series k"-I[/(G-n(x))] converges for every x e S, then the sequence
n=l

p,(x): IC"[f(G-"(x))] (2.14)
converges for every x e S and defined g(x): l.m p,,(x), the function g is a solution of equation
(2.7).
Morver he following conditions hold

d (g(x), f(x)) k"-’[A(G-"(x))], x e S, (2.15)
n=l

,-tm K (’-. [a()])= a(), x e S. (.)
The function g is the only solution of (2.7) satisfying (2.15) d (2.16).

PROOF. The prf follows step by step that of Proposition 1. After the evaluation of the
distce between f[G-’(z)] and K-’[f(z)l one proves that {p,(x)} is a Cauchy sequence for
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every x E S, and thus is convergent. So we inmediately obtain (2.7) and (2.15).
Also for the uniqueness we proceed as in Proposition 1.

REMARK 1. Note that in Propositions and 2, only the function A(x) has been used, so

they are stability theorems in the sense of Hyers-Ulam for the functional equation in a single

variable (2.7). The special case of the equation g(2x)= 2g(x) (where ,r belongs to a semigroup

and the values of g are in a Banach space) with A(x) < const follows immediately from [2] and is

presented in [3]. The stability of the equation g(2z)= 4g(z) (x in a group and g(x)in a Banach

space) again with A(z)5 const, is contained in [4].
REMA 2. In Proposition 1, in order to have the convergence of the series

k-"[(G"(z))], it is enough to require that the function k satisfies the inequality k(t) ct for

some c > and that the series E c-"(G"-(x))is convergent. An analogous remark holds for

Proposition 2.

MA 3. Assume S is a topological space, F d f e continuous functions. The

function k in Proposition 1 is continuous at 0, so from d(K-l(u),K-l(v))= k-l(d(u,v))we get

the continuity of K-1. It follows that q,:SX is a continuous function for every n G N. We c

conclude that if for each point z S there is a neighborhood U 9 x such that the series

k-"[(G"-l(z))] converges uniformly on U, then the function g is continuous on S. Note

that this happens when the sup{(G"-x(z)):n 1,x S} < +. An analogous remk holds

for Proposition 2, where we need the continuity of the function G-1.
The next two theorems give results of stability for the functional equation (1.1). Essenti

tls e Propositidns d 2 and now a fundamentM role is assumed by the "gebrc"

properties of the functions F and H.
THEOM 1. Assume that 1 hypotheses of Proposition e satisfied. Moreover suppose:

Vx, y e S, F[F(x,y), F(x,y)] F[F(x,x), F(y,y)] (2.17)

Vu, v e X,z (z, ,%) X

g-l[g(u,v,z)] g[g-(u),g-(v),g-(z)] (2.18)

w, s, --((v-(),v-())0 s .. (e.)

Then the function g defined in Proposition 1 is a solution of the functionM equation (1.1).
PROOf. We recall that g(x): lira K-"[f(G"(x))]. For every x,y e S, by (2.2), (2.17),

(2.18) and the continuity of H we have

d (g-’{f[f(G"(x), V"(y))]}, g-"{g[f(G"(x)), f(G"(y)), f(R(G"(z), G"(y)))]})=

=d (g-"{f[G"(f(x,y))]}, K-"{H[f(G"(x)), f(G"(y)), f(G"(R(x,y)))]})=

d (q.(f(,)), g[q.(),q.(), q.(R(,))])

d (g[F(x,y)], H[g(x), g(y), g(R(x,y))])

On the other hd, we have Mso

d (K-"{f[F(G’(x), G"(y))]}, K-’{H[f(G"(x)), f(G’(y)), f(R(G’(x), G"(y)))]})=

k-’{d (f[F(G"(x) G"(y))], H[f(G’(x)), f(G"(y)), f(R(G"(x), G"(y)))]})}

k-"(6(G"(x), G’(y)))-- 0 as n--cx, by (2.19).
Thus the theorem follows.
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THEOREM 2. Assume that all hypotheses of Proposition 2 are satisfied. Moreover suppose:

Vx, y S, F[F(x,y), F(x,y)] F[f(x,x), F(y,y)]

Vu, v X, z=(zl, .,zv) X

K[g(u,v,z)] g[K(u),K(v),K(z)]

Vx, y s, --(6(--(x), --()))- 0 .
Then the function g defined in Proposition 2 is a solution of the functional equation (1.1).

PROOF. The proof is completely similar to that of Theorem 1.

REMARK 4. In algebraic language, the set S with the operation F is a groupoid and in the

proofs of both Theorems and 2 we do not need power associativity of S as, for instance, in [5].
Conditions (2.17) and (2.18) give the inequalities

F[G"(x),G"(y)] G"[F(x,y)], x,y S, n I, (2.20)

K-"[H(u,v,z)]= H[K-"(u), K-"(v), K-"(z)], u,v X, z X, n . (2.21)

which are used in the proof of Theorem 1.

If we stipulate the following conditions, there exists v > 2 such that

f[G"(x), G"(y)] G"[f(x,y)], z,y S, (2.22)

g-"[g(u,v,z)] g[g-"(u),g-"(v),g-"(z)],u,v X,z X, (2.23)

it is easy to prove by induction that relations (2.20) and (2.21) hold for all n of the form v,
s I, and this is sufficient for proving Theorem (see for related questions [5] and [6]). Note
that (2.22) is strictly weaker than (2.17). To see this take as (S,F) the dihedral group D4: (2.17)
is not true while (2.22) holds for v 2.

A similar remark holds for Theorem 2.

The special case when H depends only on its first two variables, i.e. when (1.1) becomes

g[F(x, y)] H[g(x), g(y)], (2.24)

has been treated in [1], where examples and counterexamples are presented.
When X is a Banach space, equation (2.24) generalizes the additive Cauchy equation

g[F(x,y)] g(z) + g(y) (2.25)
and if p(x,y)= const, Theorem 1 gives the well known Hyers result (see [2]).
Also, if S is a normed space and F is its addition, we obtain, for various forms of p(x,y) and

using either Theorem or Theorem 2, many of the results on stability published in the last years.

More precisely:

,o(=, y) = II" y , o _< ,, + b <

’(=, y) ( = "+ y % , <
a>l

(Th. 1)" see [17] and [6];

(Th. 1)" see [18],

(Th. 2)" see [10];

p(=, y) o( = II, y ), where (I):a + xR +-*R + is increasing,

symmetric and homogeneous of degree p [0, + oo)\{1} (Th. 1, Th. 2): see [20];
p(x,y)=c (*( x + q( y )), where *:R +-- R + is such that t-l*(t) - 0 as --, 0,

fft(ts) <_ (t)*(s), *(t)< for > (Th. 1): see [7].
Note that also a particular case of a stability result abou’t set-valued functions, due to Smajdor, is

contained in Theorem for equation (2.24) (IS], []).
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Let S X B be a Banach space on K (K is R or C) and let a, b, o, /L ",, .,’p E K with

a +b 1. Let r,’B-oB,, 1, .,p, be functions satisfying the functional equation

((a + b)t) (a + b)ch(t) and define R,(x,y) ,’,(x- y).

Consider now the functional equation

p
g(ax +by)= og(x) + ,:tg(y) + ",g(n,(x.y)) (2.26)

z=l
and let f: B--,B be a function with f(0) 0 such that

P
f(ax + by)- af(x)- 3f(y)- ,f(R,(x,y))II < 0( I1" / ") (2.27)

for all x, y E B, where v > 0 and R.
By using Theorems and 2 we obtain tile stability of equation (2.26) under the condition

a +bl’l + 1 - # (In tile case a +bl’la +/3 -1 in general we have no stability" see

[10] and [11]).
Note that the condition f(0)= 0 cannot be dispensed with, otherwise conditions (2.5), (2.13),

(2.18) and the analogous of Theorem 2 are not satisfied. Nevertheless when
a + +3’ +’’" + % the function f*(x)= f(x)-f(O) satisfies the inequality (2.27), so we

can apply Theorems 1or 2 to it. In the case +/3+-1+--. +7,#1, if s>0 the condition

f(0)=0 is forced by (2.27) if s<0 the function f* satisfies (2.27) with

a + + / + + %- 11 f(0)II + *( x II’+ Y ) as the right-hand side, so again we can

apply Theorem 1.

Note that equation (2.26) when a =b= 1,a 2,p= 1, 3’1 -1 and r(t)= becomes
the quadratic equation and our results contain as particular cases those in [2], [13], [14], [4].

If in (2.27) instead of I1" + II" we have the quantity x II’ll q, we obtain the

stability under the condition a + b 1 + a +/3 # 1. In the case of the quadratic equation we

obtain as a particular case the result in [15].
3. A SEPARATION THEOREM.

In the last section we assume X is a closed subinterval of R. By using the stability results
we can prove a separation theorem (for analogous results see [16]).
Assume f,g:SX are functions such that

< f(x) (3.1)
H[g(x),g(y),g(R(x,y))] < g[F(x,y)] <_ f[F(x,y)] < H[f(x),f(y),f(R(x,y))]

for all x,y

_
S. We ask whether there exists a function h:S--X solution of equation (1.1)

separating f and g, i.e., such that

g(z) < h(x) < f(x), x S. (3.2)

We prove that under the hypotheses of Theorem (or Theorem 2) with some additional

conditions on the functions involved, the answer is affirmative.

THEOREM 3. Let f,g:SX be functions satisfying (3.1) and such that f(a)= g(a). Define

a(x,y) H[f(x), f(y), f(R(x,y))]-H[g(x), g(y), g(R(x,y))], x,y e S.

Under the hypotheses of Theorem (Theorem 2) where instead of i we write a, and if K is

strictly increasing on X, there exists a function h:S--X solution of (1.1) such that

g(x)

_
h(x) < f(x) for all x S.

PROOF. We prove the theorem under the assumptions of Thecrem 1. By the hypothesis

on a we can conclude that the sequence {K-"[I(G"(x))]} converges and its limit, suy h(x), is a

solution of equation (1.1).
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By hypothesis, the functiou If(u)= H[u,,,,f(a)]= H[u, u, g( a)] is increasing. This and (3.1)
imply f(G"(z)) < K"(f(x)), so we get K-"[f(G"(x))] < f(x) and h(x) < f(x). Moreover we have

g(x) < K-"[g(G"(x))] < K-"[f(G"(x))] and so g(x) < h(x).
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