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ABSTRACT. Doeblin [i] considered some classes of finite state nonhomogeneous Markov chains

and studied their asymptotic behavior. Later Cohn [2] considered another class of such Markov

chains (not covered earlier) and obtained Doeblin type results. Though this paper does not

present the "best possible" results, the method of proof will be of interest to the reader. It is

elementary and based on Hajnal’s results on products of nonnegative matrices.
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1. INTRODUCTION.
Let {X,:x_> 0} be a non-homogeneous Markov chain with finite state space E {1,2,-,S}

defined on some probability space (f,P,P). Let (P,) be the sequence of transition probability (s
by s) matrices such that (P,),a= the entry on the zth row and 7th column of

P P(X.+ ][X,., ,),(P.,,),, (P.+IP.+’’’P,.,),. P(X.+ Jl X=+, ,),0 <_ m <
n. lit will be assumed that the matrices P are all stochastic, i.e., every row sum is one; this

means that when P(X,,=z)=O, the zth row of P. can be defined in any way as long as it is

nonnegative and has sum 1.] In [1], Doeblin considered classes of non-homogeneous Markov

chains satisfying condition (A): a positive number 6 9 V(i,j)e E x E, either (P.),a > 6 V n or

(P.),a 0 V n. He also studied more general chains:

CONDITION (B). m 6 > 0 and some positive integer N V(i,j) e E x E, either (P.),j > b

for n > N or hm(P,), 0 as noc.

Cohn [2] made a detailed study of Doeblin’s paper [1] and these conditions in the context of

Doeblin type results. Cohn [2] also studied chains satisfying conditions even more general than

Doeblin’s. The most general condition studied in Cohn’s paper is:

CONDITION (B*). q (5 > 0 9 lira rnax{(P,), [z,j 9 (P,,),a < 5} 0 as noo.

The aim of this paper is to study non-homogeneous Markov chains satisfying conditions

essentially different from the above conditions (where one does not require any kind of limit for

the sequence (P-),a or the sequence maz ((P,),a: (z, j) e A), .4 in E)in the context of Doeblin

theory. For example, if one considers a non-homogeneous Markov chain where the transition

matrices (P) satisfy for some (z,3) E x E the condition’(Pa(,,)),a > e > 0, k(n) k", n > 0,

where/," is a prime integer and lira e 0 as/coc, then this chain does not belong to the classes

of chains studied in [2,3]. As one will see shortly, these chains (for 5 1/lo9 /,’)) are a type of

chains that will satisfy the condition (*) below that define the chains studied in this paper.

In this paper. Doeblin type results are obtained for non-homogeneous Markov chains satisfying
the following condition"

CONDITION (,). For any (z, 3) E x E, either (P,),a 0 g ,t, or for u sufficiently large,

(),, >_ /(o ,)
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As will be clear from the proof, results of this paper actual holds under conditions more general
than (,). The present method of proof is different, and will be of interest to the reader.

2. PRELIMINARIES.

Throughout this and the next section, we will assume that the P,’s have the same skeleton,

i.e., either (P,),j=0Vn_>l or(P,),j>0 Vn_>l. Define that --,jifP(X,=jlX0=7)>0for
some n_> 1. If zz, is self-communicating and define the period of i,d(i)=g.c.d

{nl(P, +,),, > 0 for some k _> 0}. In the parenthesis above the phrase "for some k _> 0" can be

replaced by "V k > 0" without changing the definition since the P,’s have the same skeleton.

Note that it is easily proven that the set F {i E li-z} is a nonempty subset of E(since E is

finite). A state , as usual, is called essential if ij=)-,. A state which is not essential is called

unessential. All states in E-F are unessential. As in the homogeneous case, F is partitioned

into equivalence classes with respect to the equivalence relation ,rj iff z--,3 and j--,. Then it is

easily verified that all states within the same class have the same period. Also, in class G, with

period do and any two states i,j G, !r, 0 <_ r, < d and (P,,,,,,), > 0=n m r,(mod
do). [Recall" P,,,=P,+P,+..P,,m<n]. Also, each class Go with period do can be

partitioned into sub-classes C,j 1,2,. .do, if C and 7 C then

(p,,,),j > On-m t-tx(moddo). [The proofs of the above assertions are the same as the

homogeneous case in Chung’s book [3]]. In the proof of our theorem, we need to apply Hajnal’s

weak ergodicity result in [4]. We explain what it is. A nonnegative square matrix is called

allowable if at least one positive entry in each row and each column. For an allowable matrix

P, Hajnal [4] defined (P)as"

(P) min P’Pa Vi, j,k, if P has all entries positive,PP,’

O, otherwise

A sequence of sxs nonnegative matrices is called weakly ergodic if for each m >_ 0 and any i,

(%"")’ - V("), as nco, where the V("),’s are independent of j. We needin the state space

the following theorem: Theorem (Hajnal). A sequence of allowable matrices is weakly ergodic if

a strictly increasing sequence of integers (r,) 9 Z],, =x (P,,,,, + 1) co.

3. MAIN RESULTS.
We now state the main theorem:

THEOREM 3.1. Let (P,) be a sequence of s s stochastic matrices with state space S such

that they all have the same skeleton. Let us assume the following condition: "For each S, let

E, {j S:i-j}. Then for any two states u, v E, either (P,) 0 for all n or for sufficiently

large n, (P,),,,>_1 n). "Then the following results hold: the state space S can be

partitioned as S ToU(UE,)U(UIz), where To contains all the non-self communicating elements,

Eo’s the essential self-communicating classes and the I’s the inessential self-communicating
d(,) Eo,,,,d(a) beingclasses. Each Eo can further be partitioned into cyclical subclasses Eo I.J,,

the period of E,. Similarly, each I can be partitioned as I [.J(=)l I, where d(/3)is the
period of I. Also

(i) lim(P,,,,)i..j= for m >_ 0 for all i, if j in TO as nco

(ii) (P=,,,), 0 for m < n if in E, and j not in Eo.
(iii) (P=,,,),i 0 of n m # v- u(mod d(a)), whenever j in Eo,,,,i in Eo.

A similar result holds when in Iz, and j in I.
(iv) If e Eo,,, j E,, and n m v- u(mod d(a)), then (P,,,,), (P,) + (e,,,,,,),,

where lim(e,,,), 0 and lira 2(P,),, as
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(v) If ,,k e Iu and 3 I,,n- , v- a(,od d(;)), then hm[(P,,,),j/(P,,,,,)]

(vi) Let j e Eo,, 5 u d(a). Then for 6 S, (P...... ), (P,). E,Eo,(P,,,,),,. +
+ (,,,,), and Zim(e,,), 0 as n.

The idea of the proof is the following. First, to find a useful cstmate of the integer N (and thas

is one of the crucial steps in my proof) witi the following property: (P,+,a),, > 0 wheneet

nkN where d is the period of the element z,zT0. (The estimate is in terms of d and the

number a which is the number of elements in the class containing ,). The second step is to

consider restrictions of the sequence of blocks (each block is a product of length d(a))
to an essential class (with period d(a)); these restrictions are allowable nonnegative matrices and

then use Hajnal’s theorem to this sequence after estimating the function (given in Hanjal’s

theorem) based on the estimate that have obtained in the first step. The third step is consider

a similar procedure for the unessential classes.

PROOF. We discuss the proof in several parts.

(1) Let a,b be positive integers and 0 < a < b, g.c.d {,,b} =(a,b)=d. Then there exist

integers u and v such that ua + vb d and ]vl 5 u 5 b.

PROOF of (1). With no loss of generahty, we can assume that d 1. It is known that

there are integers s and such that

sa+tb= 1. (3.1)

Let x be the greatest integer less than or equal to. We claim that

t-az 5+bxb. (3.2)

Notice that (3.2), once established, will complete the proof of (1), for

( +) + ( x) 1. (3.3)

To establish (3.2), note first that

-s-t < < (3.4)b% < t-s b--- b

Write, =bq+r,Or<b, where q and r are integers. Let >0. Then

b sothat -xl- 1 b(a+b)- b a+"- < x < (3.)a+ b

If s<0, then b
b + q + b-X

b(a + b)"
r(a + b) < b(a + b)r(a + b) + b(a + b)). This means (3.5) holds. Note that (3.5) implies
that

ax <_ s + bz <_ b. (3.6)

Also, (3.4) implies that _< x or

az- < s + bz. (3.7)

This establishes (3.2) and (1)is proven.

(2) Let d=g.c.d.{n,n2,...,nk}, where l<n <n2< <nk are positive integers.
Then positive integers cl,c2,. .,c such that

(i) 1 k C2 k Ck

(ii) Clrt c2n c,n, d
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nk nknk etc.(iii) If d, g.c.d.{n,,n2,...,n,},l <_, < k, then ck < --, %-1 < dd
n,n, + ! n’c, < d,d,+l .d,"
PROOF OF (2). The proof follows easily using induction on k and (1).
(3) Let d be the period of a self-communicating class F and let a be the Humber of

elements in this class. For a state in this class, define the set A(i) {n E z +’(Pk, +,),, > 0 for

allK}. Also, let A(a)={nEz+’n<aandnA(j)for3inF). Then, d=g.c.d.A(a).
PROOF OF (3). Notice that d= g.c.d. A(j) for each j F. Hence, dido, where

do g.c.d.A(a). Now, let n A(,). Then, (Pk, k +,),, > 0. If n < a, then n A(a) and do in. Let

n > a. Since cannot lead to a state 3 outside F (the class containing i), which can then lead to

a state in F, it is clear that one can write n n + n2 + + 7, where each nt, < _< 1__, is in

A(a). To see this, let i=j,; then notice that (P,/,),, =E(P,+),(P,+)j’’-
(P, +,)J,-3. If m is the smallest integer such that j,, appears at least twice and j, j,,+

then a>p and n=p+(n-p), where(P,+,,,+,+p),,>0 and (P,,,_t,+),,>0. This

process is repeated. So do ln since do lnt, < <
(4) Let d be the period of a self-communicating class with a elements and N {[.a}.

Vn > N,(P,,+,),, > 0, Vk and states in this class.

PROOF of (g). Let be a state in this class. First, consider the shortest path from to

through all the other states in this class which can be described as follows: J0 to j to 2 to

etc. ,x-steps ,-steps
j to Jo

s + 1-steps

where all the j ’s are distinct and each s _< a. If the length of this shortest path is b, then

and b _< a. Note that the corresponding shortest path for any other state j in this class has also

length b, since, for example, if j j, then:

jl to j2 to J3 to etc. to to j.

s-steps sa-steps s-steps

This information will be used later. Now, by step (3) d g.c.d. {n,n2,...,nt} n_’s being

distinct, each n < a and for each hi, 1 < _< t, there is some state in the given class

(equivalent) (P,k + n),, > 0. By part (2), :t positive integers cl > c > > ct d cn
C2 Ctt. Let Nod lrt2 4- + ctrt. Let n >_ No(No 1). Then

n alNo(No 1) 4- a:No + as where a > 1, a k 0, 0 < a3 < No. Thus,

(nd al(N0 1) E Cl_ Hi_. 4- a2 E c1 1 4- a3 c1Ttl
i =2 i =2 )c! n!

i=2

Note that by part (2),

{al(N0 1) + a. aa}c n, + a3cln1.

1=2

1Nod(N0 1)--" (CI

(") > 0, then (Pl,l+md+b),, > OV states in the class. [TheNote that if md Cl m)nl Cl
1--1-

reason is the following: Considering the shortest path of length b from to through all the

states in the class to Jl to J2 to etc. to j to i. ,Attach to this path an extra m.d steps in
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the most obvious manner, i.e., for each Jl_, there is an 7z1_ such that (Pk-, + c1
I’"). )1_ s_ > 0, so

that the new path looks like

ito j toj to jtoj2 to toj.toi].

,,,-teps
Cl re)hi_step

Since, ba2anddib, No(No 1)+[]a d +([}]a
Therefore, if n k([]a), then n.d m.d+b,m k No(No- 1),V in the class,

(P, + .),, > 0.

(5) Let G0 { S}:hm(P,.), 0,Vm R 0, V states as }.
Since S is finite, G#. Let kGo zS, hm(P...... t),>0 for some m as t. Or

g}) > O. Since

g(’")z, f....z,.g(’)r > ,,, ff g) > 0.
r=m+l

Thus k is recurrent and kk.

(6) Let T0 {j in s: jj}. Then T0 in G0. The set T; can be partitioned into equivalence

classes with respect to the equivalence relation "". The equivalence classes in T has either all

essential or all unessential states.

(7) Let {E,E, .,E} be all the equivalence classes of T consisting of only essential

states. Each E. can also be partitioned into subclasses {E,Eo2,...,E.a(.)}. where d(a) is the

period of the class Eo as follows" For a fixed in E.,E.= {jeE.:(P,+.),>O)n
r(modd(a)))}, r d(a). Clearly, for j in E.x,k in E.j,(P,+.) > 0 implies that

n "- (rood d(a)). Note that the restriction of P,., + e(.) to E.d(.), i.e., P,
is an allowable non-negative matrix because (P, +()), 0 V j in

and for some m, so that (P,+a(.)),, 0 V n, which is a contradiction. Similarly, no column of

P.+e(.)I .a()can be a zero column. For i,j Ea(.), 3 a positive integer k, Z [] 9 Vm,

(P,+,/(.)), > 0. This means that n k N (where N is as in (5))(P, +.a(.)+,d(.)), > 0.

Let M maz{N + k,:i,j in E.a(.)}. Then M N +[]. By the assumption in the theorem,
when (P.), > 0 for i,j E., and n sufficiently large,

{Notice that for i,j Ee(.)} (P,+Me(.)), (P,[X+(M--,)Ia()+K,a(.)), > O, d
Vk k and n sufficiently large, by condition (.), we have

(P. + Me(.),. + ( + )Me(.)), k + ( + 1)Me()

It is clear that for n sufficiently large (P.,. + Me(.) .(.)) k (. + Me(.))"
Also, P,+M(.)]E.e() P.,.+M(.)IE.(.). .P+(._)Me(.),+.Ma(.)IE.e(). Thus,

using HajnM’s theorem observe that the chain P,+.Ma()IEa(.) is weakly ergodic. That is

the chNn P,+.a(.) E.a(.) is also weakly ergodic, because for n > > n’,

P, +.’e(.).M z.a(.)
times. Due to weak ergodicity, i, j E.a(.),

n. If n v(n)(mod d(a)),0 5 v(n) < d(a), then for m k d(a)
E (P(.),),i (P,.)i, 9 for n re(rood d(a)) d asn

i in .(.)
0. For i, j e E.a(.) and n re(rood d(a))(P,.),, (P(.),.) + (e,.),, where/im(e,.),, 0

as n. Writing (P’.) (P(.),.), then lira 2 (P.) as n. Let E. ,j e E.,,
Ead(a

re<n, 9n-m= -(modd(a)),l <l <l’<d(a). Then
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! 1_, ":
ol

age "’, ", l ’,,+!
el

8E
m,m+2 - m+ -,n

(8) Let {I,I,...,I} be all the equivalence classes consisting of unessential self-

communicating states. Let Ia be a class with period d(fl). Partitioning it into further subclasses

{I, Ia, ., Iaa(0)} as before, gm 1, P,,,, + Ie is an allovable non-negative matrix. Also

M n m + (’- 1)(rood d(5))(P,,,,+,,d(e)),a > for ieI and aela+ Md(3)
So (P,,,,,+,,Md()),a V(,,,

as n-+oo for z,3, keIo,t() [From Hajnal]. Vm >_ Oz, k e I& and j Iol_.,,n m ! -! (rood d(N))
(Pro, + n),J

one has
(p, +

V(),k as n.

(9) Let be any state and j eEod(). Let n=r(n)(mod d(o)). Then

(P,L (()),(,),() + (, ), wh (,), 0 . A imi ttm

hdas for jE=, u d(). Wo prove this, sume the opposite. Then r r d(a) and a

sequence of positive integers (nt) D if I,
(,) 0 < < (,),-

where each nt r(mod d(a)), and Vk 0, P,mQ,QQ Q,QmQ Q=. Clearly, j is in

C-block of Q. (Note that C-blocks of Q e strictly positive stochastic blocks with identical

rows). If not then the j-th column of Q is a zero column, hence a zero column of Q and Q, and

tm wm omai (,). sm, (@), =0 fo i T (=th o oum o @), fo e to,
E (,),, < . Ao,ih (()),(,;),, 0 o i =(@, 0. f
eT

! E=(=)UT, then Qi 0 and therefore Qi 0 for large and

, > > : (,’) < .
i TUE()

Thus

(P,, ,t’),; (P,,-), (P,t,.t’)a + (Pm’nt)’l (Pnt n,")1! 6T\Ed( ! 6 Ea( -
+ (P,., .t),! (P.t, ,.,,’) a"
1

_
TUE,d(,,,)

From (weak ergodicity result) (8)

(Pm, nt,)O- (Pr, nt,)(Pm, nt,),Ead(a) < 5.

This is a contradiction.
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