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1. INTRODUCTION.
The expressions

(2n)!
n !(n -t- 1) !’

(2r + 1)! (2n)!
r! n!(n+r+l)!’

(2n+s- 1)!
8.

n!(n+s)!
(s+2r)! (2n+s-1)!
(s-- 1)!r! n!(n+s+r)!’

(1.1)

(1.2)

(1.3)

(1.4)

are always integers. They are called the Catalan, generalized Catalan, ballot, and the super
ballot numbers, respectively [1]. Here we consider two results concerning divisibility by
expressions involving factorials, which generalize these and other similar assertions.

For given positive integers al,a_,...,at, let {al,a2,...,at} denote the least common
multiple of these integers. For integers n and k, n > k > 0, set

L(n,k) {n,n- 1,...,n- k}. (1.5)

The novel aspect of our approach is the introduction of the function

./

Q(J,B,C) H(B -i,L(C,i)), (1.6)

for B > C > J k 0, where (a, fl) denotes the greatest common divisor of the integers a and

Our results describe divisibility properties of this function "from above" and "from
below". We have

THEOREM 1.1. let m, k, J, be positive integers such that m _> k > J >_ 0, then the
number F(J, m, k) given by

Q( J, m, k)
F(J,m,k) re(m- 1)...(m- J)" (1.7)

is always an integer, where (7) is the binomial coefficient
THEOREM 12. For integers s > 1, r >_ 0, and n > 1, the integer

(2r +P(r,s) r!(s- 1)!
(1.8)
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is a multiple of
Q(r,r + s + 2n, r + s + n).

Applying Theorem 1.1 with J 0, gives that for m _> k > 0,

(1.9)

(m, k) (r)m
(1.10)

is an integer. (Note that (1.10) holds also for k 0.) Taking m 2n + s, k n, (1.10)
yields that

(2n + s,n) (2n: (2n + s,n). (2n + s

+ s)’
is an integer. Since (2n + s, n) (s, n) divides s, we have that (1.3) is an integer. Then
(1.1) is the special case s 1.

As for the expression (1.4), we apply Theorem 1.2, with s _> 1, r _> 0 and n _> 1,
obtaining that P(r, s) is a multiple of Q(r, r + s + 2n, r + s + n). But by Theorem 1.1,

(r+s+2n)(r+s+2n-1)...(s+2n) \r+s+n]

=Q(r,r+s+2n, r+s+n). (s+2n-1)!

is an integer. Thus (1.4) is an integer. Then (1.2) is the special case s 1.
2. PROOF OF THEOREM 1.1.

If not specified otherwise, all letters denote positive integers. Suppose that an integer
X is given as a product:

X=HX,. (2.1)
----1

For any positive integer A we define

N(A, X) the number of X, divisible by A. (2.2)

In all applications of this notation, the reference product (2.1) will be uniquely given. For
any prime p, let

Pow (p,X) the largest a such that p divides X (2.3)

It is easy to see that

Pow(p,X) N(p",X). (2.4)

The following two lemmas are clear.
h

LEMMA 2.1. If X is given by (2.1) and Y H Y is, such that, for all primes p and
j=l

r > 0, we have
N(p",Y) >_ N(p",X), (2.5)

then X divides Y.

LEMMA 2.2. For n _> 1, let n! H j be the reference product for n !. Then

(2.6)
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where [a] is the number of positive integers < a.
From (1.7) we have

F( J, m, k) Q( J, m, k)

Write Q(J,m,k) in the form (2.1)"

(m-J- 1)! (2.7)

J J

Q(J, rn, k) II(m- ,L(,)) HQ,(m,k).
t=l t=0

By Lemmas 2.1 and 2.2, it is enough to show that

N(p", Q) + p"
>_ p; +

Set

A(pr, F) N(pr, Q) + p" p"

so that (2.9) is equivalent to
A(p, F) > 0.

Let

+p" p" + p- p -’
where,

O<_d,.<p"-l, 0<_ e,.<_p"-l.

Then

p," p + + p,-
implying

m-J-I
=p m-k]pT + [k] + [dT+e-J-1]p (2.15)

From (2.10) and (2.15) we have:

J- 1
(2.16)A(p", F) N(p", Q) + p"

If d +e J- 1 > 0, then A(p, F) > 0. Suppose that d +e J- 1 < 0, then d +e < J.
If

L=d,.+e,., (2.17)
0 < L < J. By (2.12) we have that pr divides both m k d and k e, and hence it
divides m (d + e) m L. Then p divides (m L, k e). For > 0 we have

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

pT (m- L-tp’,k-e). (2.18)

For each such that L + tp < J, p divides:

(m L- tp", {k,k 1,...,k e,.,...,k L- tp"}) QL+t,,(m,k).

Thus each0 _<t< [_4] maps onto QL+tt,,(m, k) that is divisible by p". Since this map

is 1-1 into the factors Q,(m, k) in (2.8) that are divisible by pr, it follows that

[J-.L] (2.19)N(p", Q) >_ 1 + p"
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h’(,m (2.16), (2.17), an(l (2.19) we havo

A(p",F)> 1+
J-L

)r

It is casv to see that

P" p,. 1.

Since (2.20) and (2.21) imply (2.11), Theo,’em 1.1 is proved.
3. PROOF OF THEOREM 1.2.

LEMMA 3.1. Let

U= U,, V= V, W= I,V, Z=
,=1 1=1 1=1 k=l

For all primes p and integers r > O, we assume that

N (p", W) _< min(N(p",U),N(p", V)),

and
N (V", Z _< max(N(p",U),N(p",V)).

Then -- is an integer divisible by Z.
PROOF. We have for any prime p,

UV
Pow (p, ---) Z (N(PT’ U) + N(p, V) N(p, W))

r=l

Let
A(p) g(p, U) + N(p, V) N(p, W).

Via (3.2) and (3.3) we have:

A(p) max (N(p, U), N(p, V)) + turin (N(p, U), N(p, V)) N(p, W)
>_ g (p, Z) + g(p, W) Y(p, W) g(p, Z).

This and (3.4) yield

UV
Pow (p, ---) >_ Z N(P’ Z) Pow (p, Z),

r--1

and the lemma follows.
Write (1.9) in the form:

Q(r,r+s+2n, r+s+n)= fiQk,
k-0

where
Qk (r + s + 2n- k,L(r + s + n,k)).

We also rewrite (1.8) in the form:

P(r,s)= H(2r+s-i) (r+s-j) r!
,=0 1=0

(2.20)

(2.21)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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We will obtain Theorem 1.2 by applying Lemma 3.1 with

r--1 r--1

v H v,
t=O t=0

/inv= vj= (,-+-j,
j=O

r--1 r--1

w= H w, +
!=0 i=0

k=O k=O

Thus Z Q(r,r + s + 2n, r + s + n) Q, and

p(r,s)= UV__=
W r (s- 1)!

is an integer. As for (3.2) we have:

N(pr, W)= N(pr, r’) [r],
g(p U)= 12r+s r +

p" p"

N(p V)= Iv+s] s- I]
from which the inequMities N(p, W) N(p, U), N(p’W) N(p, V) e obvious. Thus
the proof reduces to establishing (3.3). Consider th Qt, 0 k r, such that p vides
Qt. Since this reqres that p vides

the smallest k for which this occurs is #*, where

r+s+n_#,=_ 0 (pr), 0<_#* <pr, It* < r. (3.8)

(It is the last inequality that constrains, in part, the existence of such a Qk.) Also, there
would be a smallest k*, It* < k* < r, such that

r+s+2n-k*=0 (modp). (3.9)

From (3.8) and (3.9) we have

n k* It* (mod p). (3.10)

Thus (3.9) is equivalent to

r+s+2(k*-It*)-k*--0 (modpr), It* _< k* _< r. (3.11)

If (3.8) and (3.11) are not satisfied then N(p, Z) N(p, Q) 0, and (3.3) certainly
holds. Thus we may assume that N(p, Q) > 0. The integers k such that pr divides Qk are

precisely those such that

k*_<k_<r, k_=k* (modpr), (3.12)
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:\’(p.Q) + p
Cm.’,ider two cas,’s-

Cas(’ I. p* t’* 2*. Here, for all k atisfying (3.12), w(, have

(3.13)

r +., + 2(t’* tL*) k <_ r+ s + 2(k* t*)- t’* <_ r + s,

}llld
,- + s + 2(k* L*)-/,’ >_ ,’+ s + 2(k* t*) r _> s.

Note that this implies
7">_ k-2(k*-p*)>_O.

Thus, in this case. a factor Q, which is divisible by p" maps onto V,_(k._u.), which is
divisil)le by p’. Since this map is 1-1 into the set of V that are divisible by p", we have

N(p", V) <_ N(p", Q). (3.14)

Case II. k* > 2p*. Let
q* r + s + k* 2#*. (3.15)

By (3.11), we have q* 0 (mod p). Also

q*>_r+s+l,

and
q* <_r+s+k* <_ 2r +s.

Thus q* is one of the U, and is divisible by p. Hence the integers of the form q* + tp such
that

q* + tp <_ 2r + s, t>0, (3.16)

are also among the U,’s, which are divisible by p. This yields

N(p", U) > 1 +
2r + s- q*] (3.17)pr

or inserting (3.15),

N(p, U) >_ 1 +
_

k. + 2#’1. (3.18)p

(Actually equality can be proved in (3.18), but this is not needed). Via (3.13) and (3.18),
the inequality

g(p, Q) <_ g(p, U)

would be a consequence of
r- k* + 2p*]

p,-

But the last inequality is obvious since #* > 0, and the theorem follows.
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