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ABSTRACT. We generalize previous work done by Donald J. Rose and Robert E. Tarjan [2],
who developed efficient algorithms for use on directed graphs. This paper considers an edge
elimination process on bipartite graphs, presenting several theorems which lead to an algorithm
for computing the minimal fill-in of a given ordered graph.
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1. INTRODUCTION
Gaussian elimination is commonly used in matrix theory. If the matrix is sparse, that is,

contains a large number of zero entries, it is advantageous to avoid unnecessary operations on

those zeros in order to save memory and run time. When we perforn Gaussian elinination, some

of the zeros in the matrix may be replaced by nonzeros. These new nonzeros are called "fill-in".

A perfect ordering is a sequence of Gaussian pivots which produces no fill-in.

Much in known about the case in which the coefficient matr;x is symmetric (see Golumbic

[1]). It is also known how to determine fill-ins for nonsymmetric matrices when the pivots are

chosen on the main diagonal. Algorithms have been developed for computing the fill-in for any

ordering of pivots, for generating a perfect ordering if such an ordering exists, and for reducing a

fill-in to a minimal one (Rose and Tarjan [2]). However, it may be the case that choosing pivots

which are not on the main diagonal produces a smaller fill-in than does choosing pivots which

are on the main diagonal. For example, choosing any pivot on the nain diagonal in the following

matrix produces a fill-in of at least one entry. (The entries denoted by an X represent non-zeros

in the matrix.)

X X X 0
0 X X O/

0 0 X X

But choosing the entry in row two, column one produces no fill-in, and, in fact, there is a perfect
elimination ordering for this matrix if pivots off the main diagonal are chosen.

Therefore, this paper generalizes the results of Rose and Tarjan [2] in order to develop an

algorithm which takes all nonzero entries of a given matrix into account, as opposed to only the
entries on the main diagonal. We draw heavily from several chapters of a book by Golumbic [1],
and some of the proofs of Rose and Tarjan [2] can be readily adapted for our purposes.
2. DEFINITIONS AND NOTATION

We generally follow the same notation as Golumbic [1] and Rose et al. [3].
An undirected graph is a pair G (V,E), where V is a finite set of n IV[ elements called

vertices and E C_ {(v,w)lv,w E V,v w} is a set of e [E unordered vertex pairs called
edges. An undirected graph G (V,E) is bipartite if its vertices can be partitioned into two
disjoint sets V X + Y, i.e. every edge has one endpoifft in X and the other in Y. We use the
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notation H (X,Y,E) to denote bipartite graphs. A bipartite graph H (X,Y,E) is complete

if for every x E X and y E Y we have (x,y) E.

Given v V, md.(v) {w Vl(v,w E} is the set of vertices adjacent to v. For a

bipartite graph I-I and (x,y) e E, Adj(x,y) {{(x,k)lk Y} U {(J,y)lJ e X}) is the set of

edges adjacent to (x,y).
A path [v,....v] is a sequence of vertices such that (v,,v+) E for j 1,...,k- 1. A

cycle of length k > 2 is a path [vl,...,v,vl] in which vl,...,v are distinct.

A graph called chordal if every cycle of length strictly greater than 3 possesses a chord, i.e.

an edge joining two nonconsecutive vertices of the cycle. Similarly, a bipartite graph is said to

be btpartite chordal if every cycle of length strictly greater than four contains a chord.

Given a subset A C_ V of the vertices, define the subgraph induced by A to be GA (A,EA)
where Ea {(x,y)lx A and y E A}. A subset A C_ V is called a clique if it induces a complete

subgraph. We call a vertex x szmplicialif Adj(x) induces a complete subgraph. In a bipartite

graph, a subset A C X t2 Y is called a biclique if it induces a complete bipartite subgraph. An

edge e (x,y) of a bipartite graph H is called bisimplicial if Adj(x)+ Adj(y) induces a complete

bipartite subgraph of H.
For a bipartite graph H (X, Y,E), with IX] IYI n, an ordering on E is a sequence

[(x,,y),(z2,y:) (x,,,y,)] [e,e2,...,e,,] of pairwise nonadjacent edges of H (X,Y,E),
where X [zl,z:,...,x,] and Y [yl,y,...,y,]. The graph H# (X, Y, E, ) is an ordered

graph.

Denote by S, the set ofendpoints of the edges e,...,e, and let So q). We say that is

a perfect edge elimination scheme for H if each edge e, is bisimplicial in the remaining induced

subgraph Hv_s,_, and Hv-s. has no edge. Thus we regard the elimination of an edge as the

removal of all edges adjacent to e. A graph with a perfect edge elimination ordering is called a

perfect edge elimination graph. Since this paper deals primarily with edge elimination orderings,
we will refer to edge elimination orderings as simply "elimination orderings" or "elimination
schemes".

Finally, for a vertex v, the deficiency D(v) is the set of pairs defined by D(v) {(x,
Adj(x), v Adj(y),x

_
Adj(y),x y}. So an alternate definition for a vertex v to be simplicial

is if D(v)=
For an edge (x,y), the deficiency D(x,y) is the set of pairs defined by D(x,y) {(a,b)[

a,b Adj(x) + Adj(y), (a, b) E}. An alternate definition for an edge (x,y) in the bipartite
graph H to be bisimplicial is if D(x,y)

Given an arbitrary n n matrix M (mi), the bipartite graph H (X,Y,E), with

X {x, ,x,,} and Y {y,...,y,}, and the property that m,i 0 whenever (x,,y,) E is

called a bipartite graph of M.
When reducing M by Gaussian elimination, the edges of D(xi, Y1 correspond exactly to the

fill-in entries created when element mii is used as a pivot in the matrix M. Pivoting on m, is

equivalent to making Adj(x) + Adj(yi) into a complete subgraph by adding any missing edges

and deleting (xi,y:). Therefore, a graph which has a perfect scheme is equivalent to a matrix

which can be reduced to the identity without fill-in.

Let M be a matrix with biapartite garph H and an ordering of H. Define F(H,) to

be the set of all fill-ins generated by reducing M by Gaussian elimination when the entries

corresponding to the ordering are succesively choosen to act as pivots. Then is a minimal

elimination ordering of H if no other ordering satisfies F(I-I) C F(H). The ordering is

a minimum elimination ordering of H if no other ordering $ satisfies IF(H)I < IF(H,)I. This

paper deals with minimal orderings only. It is known that the computation of the minimum fill-in
of a graph in NP-complete, Yannakakis [4].
3. CHARACTERISTICS OF BIPARTITE GRAPHS

In the case of symmetric matrices, Gaussian elimination is modelled by vertex elimination in-
stead of edge elimination. It is known that a symmetric matrix M has a perfect vertex elimination

scheme if and only if its associated graph is chordal (Golumbic, [1]). But there is no character-
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ization of graphs with edge elimination schemes in terms of some forbiddden subgraphs. While
it is true that every chordal bipartite graph is a perfect elimination bipartite graph (Oolumbic,
[1]), the converse of this statement is false. That is, it may be the case that a perfect elimination
bipartite graph is not chordal bipartite. In this paper, there will be no restriction that the graph
must be bipartite chordal.

The bisimpliciality of an edge is a hereditary property. That is, if an edge is bisimplicial, it
is also bisimplicialin an induced subgraph. In order to construct perfect schemes, it is possible
to choose an arbitrary bisimplicial edge, remove it, and then repeat the process in the induced
subgraph. A theorem from Golumbic [1] formalizes this observation.

THEOREM 1. Ire (x,y) is a bisimplicial edge of a perfect elimination bipartite graph
H (X,Y,E), then Hx_{}+y_{} is also a perfect elimination bipartite graph.

In other words, if H is a perfect elimination bipartite graph and (x,y) is any edge with

D(x,y) 0, then there is a perfect elimination ordering with (1)= (x,y).
The following theorems, then, are generalizations from Rose and Tarjan [2]. Theorem 2 is

mentioned as Ex.4, p.285 in Golumbic [1] but for the sake of completeness it is proven here.

Theorem 2 essentially says that we can add the deficiency of an edge to a perfect elimination

graph, and new graph will have the same perfect elimination scheme.

THEOREM 2. Let H (X, Y, E) be a bipartite graph with perfect edge elimination scheme

[(x,,y),(z2,y2),...,(z,,y,,)]. Let e E E and let H’= (X,Y,E UD(e)). Then is a perfect

edge elimination scheme for H’.
PtOOF. We must show that for any (x,,yk), (xk,y,,) e E t.JD(e) with m,p > k, (x,,y,)

E t.J D(e). There are three cases to consider. In the following illustrations, the dotted lines

indicate an edge in D(e), while solid lines indicate edges in E U D(e).
Case 1: Both (x,,yk) and (x,y) are in E. Then since is perfect for I-I (X,Y,E),

(x,, y,,, must be in E. Therefore, (x,,y,) E L.J D(e).

X

Yk Yrn

Fig.

Case 2: Both (z,,y:) and (z.,y,,,) are in D(e). Then let e (z,,yq). So (z:,y..,)

_
D(e)

implies (z:,yq) E and (z,,y,,.,) E E, and (z,,y:) D(e)implies (z,,yq) E E and (z,,y) E E.
Then (z,,y,..) and (x,,yq) E implies (zr,,y..,) E U D(e).

t XO k

e

Yq Yk

Fig. 2

Case 3: One of the edges, say (x.,y,), without loss of generality, is in E, while (x,,y.) is

in D(e). Then let e (x,,y). Since (x,,y) e D(e), (x,,y)is in E and (x,,y)is in E.

If > k, then (x, y,) E E, since is a perfect ordering for H. But then we have (x,, y,,,) E,

and (z,,yq) E, which implies (x,,y,,) E U D(e).
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xt xo xk

q Yk Ym
Fg. 3

]f < k then (x,y) EUI:}(e) which implies (x,y,) E. But in that case we return to

Case 1, and (zp, y,) E E U D(e).
xt Xk

Yt Yq Yk Ym

Fig. 4

COROLLARY 1. If H (X,Y,E) is a perfect elimination bipartite graph, then for any

edge (x,y) the bipartite graph H(x.y) (X \ {x},Y \ {Y},Ex\{,}+r\(,} U D(x,y)) is also a

perfect elimination graph.

PROOF. By Theorem 2, the graph H’ (X,Y,E U D(x,y)) has a perfect edge elimination

scheme, and (x,y) is bisimplicial in H’. Then, Theorem implies that H(x,y) is also a perfect

edge elimination graph.
The next theorem provides a characterisation of bipartite graphs with nonminimal fill-in, a

theorem which is utilized extensively in the algorithm at the end of this paper.

THEOREM 3. Let H (X,Y,E) be a bipartite graph and let F be a fill-in for H. If

F is not minimal, then there exists an edge e (x,y) such that D(x,y) C F and D’(x,y) {,
where D’(x,y) is the deficiency of e in H’ (X, Y,E U F).

PROOF. Let S {(x,y) EE E O F D’(x,y) }. For any edge (x,y), D(x,y) C_ D’(x,y),
so D(x,y) \ F C_ D’(x,y). Hence if (x,y) is in S, then D(x,y) \ F C_ }, or D(x,y) C_ F. Since

H’ is a perfect elimination graph, S }. Let (w,z) S. If D(w,z) C F, then the theorem holds

with (x,y)= (w,z).

Suppose, on the other hand, that D(w,z) F. Let F0 be a fill-in for H such that F0 C F,
and let be a perfect elimination ordering for H0 (X,Y,E U F0). Then D((1)) C F0 C F.

By Theorem 2, is a perfect ordering for H’ (X,Y,E U D(w,z)). Thus D’((1)) }. Hence
the theorem holds with (x,y)= (1).

The next theorem states that given a bipartite graph with a perfect scheme and a supergraph
with the same property, we can remove an edge from the supergraph such that the resulting graph
is also a perfect elimination graph.

THEOREM 4. Let H (X,Y,E) be a perfect elimination bipartite graph. If H’
(X,Y, EUJ) and J }, and Ial >_ 2, then there exists an fE J such that H" (X,Y,EUJ\{f})
is also a perfect elimination graph.

PROOF. Proof is by induction on n IEI. If n _< 1, the result is obvious. Suppose the

result is true for all n _< no and let n no + 1. By Theorem 3, there exists an edge e (x,y)
such that D(x,y) C J and D’(x,y) }. We have two cases.

Case 1: There is an edge el J which has x or y as an endpoint. By Theorem 2, there
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exists a perfect elimination ordering for H’ with (1) (x,y), but this ordering is also perfect
for H’= (X,Y,E \

Case 2: Case does not apply. Then by Theorem 3, since F is not minimal, there exists
an edge e (x,y)such that D’(x,y) q)and D(x,y) C J. Then H(=,,) (X \ (x},Y \
{y},Ex\{=}+y\{y I.J D(x,y)) and Hi=.y (X \ {z},Y \ {y},Ex\{=}+y\{y (J J) are perfect
elimination graphs.

Then by the induction hypothesis, there exists f E J\D(x,y) such that H(=,) (X\{x},Y\
{y},Ex\{=}+y\{y} tJ(J\ {f}))is a perfect elimination graph. But then H’= (X,Y,EtJ(J \ {f}))
is a perfect elimination graph since f D(x,y).
4. MINIMAL FILL PROCEDURE

The previous theorems allow us to construct an efficient algorithm for determining the mini-
mal fill-in of a given bipartite graph. The algorithm is most easily stated as a recursive procedure.
By Theorem 3, if the fill-in for a graph is not minimal, we can find an edge (x,y) whose defi-

ciency in H is not aI1 of F and whose deficiency in H’ is empty. If some edge e in F is adjacent
to (x,y), we can delete e from F and repeat the procedure. Otherwise, we form the graph
HI (X \ {z},Y \ {y},Ex_{=}+y_{} (3D(x,y)), which has a fill-in of F- D(x,y). The proce-
dure is applied recursively so that F D(x,y) is reduced to a minimal fill-in FI in HI. We then
form the graph H2 (X,Y,E t.J FI), which has fill-in D(x,y). Again, we apply the procedure
recursively to reduce D(x,y) to a minimal fill-in F2 in H. Then F0 F t5 F is a minimal
fill-in for H. The following algorithm summarizes this procedure.

Procedure MINFILL (X,Y,E,F,F0)
BEGIN
declare F,Fa set variables local to procedure MINFILL
IF H (X,Y,E) has no edge (x,y) with D’(x,y) q) and D(xy) C F

THEN F0 := F.

ELSE BEGIN

Let (x,y) be an edge with S’(x,y) q) and D(x,y) C F.

IF F contains some edge e incident to (x,y)

THEN (Call 1) MINFILL (X,Y,E,F- {e},F0)
ELSE BEGIN

(Call 2) MINFILL (X \ {z},Y \ {y},Ex\{.}+r\{,} U D(x,y),F D(x,y),F)

(Call 3) MINFILL (X,Y,E Fx,D(x,y),F)

Fo := F U F
END

END
END

THEOREM 5. If F is a fill-in for a graph H (X,Y,E), then the set Fo computed by the

execution of MF(X,Y,E,F,F0) is a minimal fill-in contained in F.

PROOF. The proof largely follows that of Rose and Tarjan [2]. We proceed by induction on

the number of edges in F. If F }, the theorem is obviously true. Suppose the theorem is true

IFI < k =d

Now, if H (X,Y,E) has no edge (x,y) such that D’(x,y) ) and D(x,y) C F, then

F0 F is minimal by Theorem 3. So suppose (x,y) is an edge satisfying D’(x,y) { and

D(x,y) C F.

If F contains an edge e incident to (x, y), then F {e} is a fill-in by the proof of Theorem

4. Then by the induction hypothesis, the set F0 C_ F e} computed by the recursive call (Call
1) is a minimal fill-in.
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Suppose F contains no edge e incident to (x,y). Since D’(x,y) q}, I-I (X \ {x),Y \
{y},Ex_(}+r_( UF) has a perfect ordering by Theorem 1. Thus F-D(x,y)is a fill-in for

H1. And by the induction hypothesis, the set F C_ F D(x,y) computed by the recursive call

(Call 2) is a minimal fill in for Hi.
Since D(x,y) is a fill-in for H2 (X,Y,E UF), the induction hypothesis also implies that

the set F C D(x,y) conputed by the recursive call (Call 3) is a minimal fill-in for H..
Now let W C_ F1 (3F. be a fill-in for H. Then (X,Y,EUW) is a perfect elimination graph.

By Theorem 2, so is (X,Y,E UW UD(x,y)), and by Theorem 1, so is Itw (X \ {x},Y \
{Y}, Ex_ (,}+r_ (y) UD(x,y) UW). Since F is a minimal fill-in for Hw, we have Ft C_ W.

Finally, we have that F _C W C_ F U F, and W is a fill-in for H, and F. is a minimal
fill-in for H. This all implies that W F U F. Thus FI U F is a mininal fill-in for H.

The above algorithm, as we have described, examines all entries in a matrix to determine a

minimal fill-in. The following example illustrates the usefulness of this algorithm.

X X 0 X 0 X]
X X X 0 X 0

0 0 X X X O
M:Ix o o x o

X X X 0 0 X

If we take as in Rose and Tarjan [2] an ordering of pivots down the main diagonal so

4) [(z,yx),(x2,y),...,(xs,y)], where (z,,y) corresponds to the entry rn,, then the fill-in F

produced by this ordering contains 9 edges, ltowever, in this example, a different ordering of

pivots, again only choosing entries from the main diagonal, produces a minimal fill-in of F with 5

edges. Finally, if we choose from among all the entries in the matrix instead of only the entries on

the diagonal, there is an ordering which produces a minimal fill-in of F which has only 3 edges.

So it is clear that this algorithm, which chooses entries from among all entries in the matrix, is

capable of producing the smallest minimal fill-ins.
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