A NOTE ON KÖTHE-TOEPLITZ DUALS OF CERTAIN SEQUENCE SPACES AND THEIR MATRIX TRANSFORMATIONS

B. CHOUDHARY and S.K. MISHRA

Department of Mathematics Indian Institute of Technology Hauz Khas, New Delhi - 110016 India

(In the memory of Late Professor B. Kuttner)

(Received November 5, 1992 and in revised form September 22, 1993)

ABSTRACT. In this paper we define the sequence spaces $S\ell_{\infty}(p)$, Sc(p) and $Sc_0(p)$ and determine the Köthe-Toeplitz duals of $S\ell_{\infty}(p)$. We also obtain necessary and sufficient conditions for a matrix A to map $S\ell_{\infty}(p)$ to ℓ_{∞} and investigate some related problems.

KEY WORDS AND PHRASES. Sequence spaces, Köthe-Toeplitz duals, Matrix transformations. 1992 AMS SUBJECT CLASSIFICATION CODES. 40H05

1. INTRODUCTION.

If $\{p_k\}$ is a sequence of strictly positive real numbers, then

$$\ell_{\infty}(\mathbf{p}) = \{ \mathbf{x} : \sup_{\mathbf{k}} | \mathbf{x}_{\mathbf{k}} |^{\mathbf{p}_{\mathbf{k}}} < \infty \};$$
$$\mathbf{c}(\mathbf{p}) = \{ \mathbf{x} : | \mathbf{x}_{\mathbf{k}} - \ell |^{\mathbf{p}_{\mathbf{k}}} \to 0 \text{ for some } \ell \};$$

 $c_o(p) = \{ x : | x_k |^{p_k} \to 0 \}$.

For detailed discussion on these spaces we refer [1,4,5,6,7,8].

Recently Kizmaz [3] defined the following sequence spaces: If $\Delta x = (x_k \cdot x_{k+1})$, then

$$\ell_{\mathbf{a}}(\Delta) = \{ \mathbf{x} = \{ \mathbf{x}_{\mathbf{k}} \} : \Delta \mathbf{x} \in \ell_{\mathbf{a}} \};$$
$$\mathbf{c}(\Delta) = \{ \mathbf{x} = \{ \mathbf{x}_{\mathbf{k}} \} : \Delta \mathbf{x} \in \mathbf{c} \};$$
$$\mathbf{c}_{\mathbf{a}}(\Delta) = \{ \mathbf{x} = \{ \mathbf{x}_{\mathbf{k}} \} : \Delta \mathbf{x} \in \mathbf{c}_{\mathbf{a}} \}.$$

These spaces are Banach spaces with norm

 $\|\mathbf{x}\|_{\Delta} = \|\mathbf{x}_1\| + \|\Delta\mathbf{x}\|_{\infty}$

Furthermore, since $\ell_{\infty}(\Delta)$ is a Banach space with continuous co-ordinates (that is, $|\mathbf{x}^n \cdot \mathbf{x}|_{\Delta} \to 0$ implies $|\mathbf{x}_k^n \cdot \mathbf{x}_k| \to 0$ for each $k \in \mathbb{N}$, as $n \to \infty$), it is a BK-space.

If X is a sequene space, we define [2]

$$\mathbf{X}^{\alpha} = \{ \mathbf{a} = (\mathbf{a}_k) : \sum_{k=1}^{\infty} | \mathbf{a}_k \mathbf{x}_k | < \infty \text{ for each } \mathbf{x} \in \mathbf{X} \};$$

$$X^{\beta} = \{ a = (a_k) : \sum_{k=1}^{\infty} a_k x_k \text{ is convergent for each } x \in X \};$$

X^{α} and X^{β} are called the α -(or Köthe-Toeplitz) and β -(or generalized Köthe-Toeplitz), dual spaces of X respectively.

We now define some new sequence spaces. If $\Delta x = x_k - x_{k-1}$, we define

$$\begin{split} & S\ell_{\omega}(\mathbf{p}) = \{ \mathbf{x} = \{\mathbf{x}_{\mathbf{k}}\} : \Delta \mathbf{x} \in \ell_{\omega}(\mathbf{p}) \}; \\ & Sc(\mathbf{p}) = \{ \mathbf{x} = \{\mathbf{x}_{\mathbf{k}}\} : \Delta \mathbf{x} \in c(\mathbf{p}) \}; \\ & Sc_{o}(\mathbf{p}) = \{ \mathbf{x} = \{\mathbf{x}_{\mathbf{k}}\} : \Delta \mathbf{x} \in c_{o}(\mathbf{p}) \}. \end{split}$$

We observe that if $x_k = k$ (for all $k \in \mathbb{N}$) then $x \in S\ell_{\infty}(p)$ but $x \notin \ell_{\infty}(p)$.

PROPERTIES : (i) $S\ell_{\infty}(p)$ and Sc(p) are paranormed spaces with the paranorm $g(x) = \sup_{k} |\Delta x_{k}| |_{k}^{p,M}$ where $M = \max(1, \sup p_{k})$ if and only if $0 < \inf p_{k} \le \sup p_{k} < \infty$.

(ii) If $p = \{p_k\}$ is a bounded sequence, then $Sc_o(p)$ is a paranormed space with the paranorm

$$g(\mathbf{x}) = \sup_{\mathbf{k}} \left| \Delta \mathbf{x}_{\mathbf{k}} \right|^{\mathbf{p}_{\mathbf{k}}/\mathbf{M}}$$

The proof of these properties are similar to the proof given in [6, Th.1].

2. DUALS

THEOREM 1. Let $p_k > 0$ for every k. Then

$$(S\ell_{\omega}(p))^{\alpha} = \bigcap_{N=1}^{\infty} \left\{ y = \{ y_n \} : \sum_{n=1}^{\infty} \left\{ \sum_{m=1}^{n} N^{1/p_m} \right\} \mid y_n \mid < \infty \right\}$$

PROOF. We need to prove that $(S\ell_{\infty}(p))^{\alpha}$ is the set of all sequences y such that, for every positive integer N,

$$\sum_{n=1}^{\infty} \left\{ \sum_{m=1}^{n} N^{1/p_m} \right\} \mid y_n \mid < \infty.$$

If $x \in S\ell_{\infty}(p)$, then by definition, $|\Delta X_n|^{p_{\bullet}}$ is bounded, so that, for some N, $|\Delta X_n|^{p_{\bullet}} \leq N$; thus $|\Delta X_n| \leq N^{1/p_{\bullet}} \cdot So$

$$|\mathbf{x}_{n}| \leq \sum_{m=1}^{n} N^{1/p_{m}};$$
 (2.1)

(by the relation $\mathbf{x}_n = \sum_{v=1}^n \Delta \mathbf{x}_v$)

682

Thus, if

$$\sum_{n=1}^{\infty} \left\{ \sum_{m=1}^{n} N^{1/p_m} \right\} |y_n| < \infty$$
(2.2)

holds, then

$$\sum_{n=1}^{\infty} |\mathbf{x}_n \mathbf{y}_n| < \infty$$

Hence, (2.2) is a sufficient condition for $y \in (S\ell_{\infty}(p))^{\alpha}$. Conversely, if N is given we can define $x \in S\ell_{\infty}(p)$ by $\mathbf{x}_{\mathbf{m}} = \sum_{n=1}^{m} N^{1/p_n}$, so that (2.2) is necessary for y to be in $(S\ell_{\infty}(p))^{\alpha}$.

Now we raise the following question :

Is it true that $(S\ell_{\infty}(p))^{\alpha}$ is the set of sequences y such that, for every positive integer N,

$$\sum_{n=1}^{\infty} n N^{1/p_n} |y_n| < \infty ?$$
 (2.3)

In other words, is it true that

$$(S\ell_{\omega}(p))^{\alpha} = \bigcap_{N=1}^{\infty} \left\{ y = (y_n): \sum_{n=1}^{\infty} n N^{1/p_n} \mid y_n \mid < \infty \right\}?$$

It does not follow at once from Theorem 1 that this conjecture is false, since it is not obvious that the assertion that (2.2) holds for all N is not equivalent to the assertion that (2.3) holds for all N. Indeed, there are some sequences $\{p_n\}$ for which these assertions are equivalent. However, for general $\{p_n\}$ they need not be equivalent. We give examples to show that

- (A) It is possible to choose $\{p_n\}$ such that there is a $y = \{y_n\}$ for which (2.3) holds for all N, but (2.2) does not. Thus (2.3) is not always sufficient.
- (B) It is possible to choose {p_n} such that there is a y for which (2.2) holds for all n, but (2.3) does not. Thus (2.3) is not always necessary.

EXAMPLE 1. Take

$$\left\{ \begin{array}{c} p_{2k-1} = 1 \\ p_{2k} = 1/k \end{array} \right\} k = (1, 2, 3, ...)$$

Then take

$$\begin{cases} y_{2k-1} = \frac{1}{k^3} \\ y_{2k} = 0 \end{cases}$$
 (k = 1,2,3,...)

Since $y_{2k} = 0$, it is only the odd terms which contribute to (2.2) or (2.3). For these terms we take $p_n = 1$ and thus the sum on the left of (2.3) is

$$N \sum_{k=1}^{\infty} \frac{2k-1}{k^3} < \infty$$

But for n = 2k-1, $k \ge 2$,

B. CHOUDHARY AND S. K. MISHRA

$$\sum_{m=1}^{n} N^{1/p_{m}} \geq N^{1/p_{2k-2}} = N^{k-1}.$$

Thus the sum on the left of (2.2) is greater than or equal to

$$\sum_{k=2}^{\infty} \frac{N^{k-1}}{k^3} = \infty \text{ if } N > 1.$$

EXAMPLE 2. Take

$$p_{n} = \begin{cases} \frac{1}{\log r} & (n = 2^{r}, r = 2, 3, 4, ...) \\ 1 & (otherwise) \end{cases}$$

Then take

$$y_{n} = \begin{cases} \frac{1}{2^{r}r^{2}} & (n = 2^{r}, r = 2, 3, 4, ...) \\ 0 & (otherwise) \end{cases}$$

In the sums (2.2), (2.3) all the terms vanish except for $n = 2^r$, r = 2,3,4,... So we need consider only those terms. If $n = 2^r$, $r \ge 2$ then there are 2^r -(r-1) terms in the sum

$$\sum_{m=1}^{n} N^{1/p_{m}} \text{ for which } p_{m} = 1 \text{ so that}$$

$$\sum_{m=1}^{n} N^{1}/p_{m} = (2^{r} - (r-1))N + \sum_{\rho=2}^{r} N^{\log \rho}$$

But $N^{\log \rho} = \rho^{\log N}$ so that for fixed N

$$\sum_{\rho=2}^{r} N^{\log \rho} = \sum_{\rho=2}^{r} \rho^{\log N} = O(r^{\log N+1}) = o(2^{r}).$$

Thus, for fixed N, and $n = 2^r$ we have

$$\sum_{m=1}^{n} N^{1/p_{m}} = O(2^{r})$$

so that

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{n} N^{1/p_m} \right) \mid y_n \mid = O\left(\sum_{r=2}^{\infty} \frac{1}{r^2} \right) < \infty$$

But

$$\sum_{n=1}^{\infty} nN^{1/p_n} | y_n | = \sum_{r=2}^{\infty} 2^r N^{\log r} \frac{1}{2^r r^2}$$
$$= \sum_{r=2}^{\infty} \frac{r^{\log N}}{r^2} \text{ (since } N^{\log r} = r^{\log N}\text{)}$$

 $= \infty$ if log N ≥ 1 ,

i.e. for N = 3, 4, 5, ...

684

We now consider the second dual of $(S\ell_{\star}(p))$ i.e. $(S\ell_{\star}(p))^{n\tau}$. Is it true that

$$(\mathfrak{S}\ell_{\infty}(\mathfrak{p}))^{\alpha\mathfrak{a}} = \bigcup_{N=1}^{\infty} \left\{ Z: \sup_{n} \frac{|z_{n}|}{\sum_{m=1}^{n} N^{1/p_{m}}} \right\} < \infty \} ?$$

In other words, is it true that $(S\ell_{\infty}(P))^{\alpha\alpha}$ is the set of sequences $z = \{z_n\}$ which are such that, for some N

$$\mathbf{z}_{\mathbf{n}} = O\left(\sum_{\mathbf{m}=1}^{n} \mathbf{N}^{1/\mathbf{p}_{\mathbf{m}}}\right) ?$$
(2.4)

In order to see that this conjecture is true, we shall first prove a lemma.

LEMMA 1. Suppose that, for each N, $\{a_n^{(N)}\}\$ is a sequence of positive numbers, and that, for fixed n, $a_n^{(N)}$ is non-decreasing in N. Let X denote the set of sequences $\{y_n\}$ which are such that, for all N,

$$\sum_{n=1}^{\infty} \mathbf{a}_n^{(N)} | \mathbf{y}_n | < \infty$$
(2.5)

Then X^{α} is the set of all $\{z_n\}$ such that, for some N

$$\mathbf{z}_{\mathbf{n}} = \mathbf{O} \, \left(\mathbf{a}_{\mathbf{n}}^{(N)} \right) \tag{2.6}$$

PROOF. The result that (2.6) is sufficient for $z \in X^{\alpha}$ is trivial; for, if (2.6) holds for some N then since (2.5) holds for all N it holds for that particular N, whence

$$\sum_{n=1}^{\infty} |y_n z_n| < \infty$$

The result that (2.6) is necessary is not so obvious. Suppose it is false that there is some N for which (2.6) holds.

Then, for every N,

$$\frac{z_n}{a_n^{(N)}}$$
 is unbounded.

Hence, we can determine an increasing sequence $\{n_N\}$ of positive integers such that

$$\frac{\left| z_{n_{N}} \right|}{a_{n_{N}}^{(N)}} \geq N^{2}$$

Now define $y = \{y_n\}$ by

$$y_{n} = \begin{cases} \frac{1}{N^{2} a_{n_{N}}^{(N)}} & (n = n_{N}, N = 1, 2, 3, ...) \\ 0 & \text{otherwise} \end{cases}$$

Now given any fixed N we have for all $M \ge N$

$$y_{n_M} = \frac{1}{M^2 a_{n_M}^{(M)}} \le \frac{1}{M^2 a_{n_M}^{(N)}}$$

(since $a_n^{(N)}$ is non-decreasing for fixed n).

The terms in (2.5) for which n is not equal to n_M for some M are 0; hence the contribution to (2.5) of these terms with $n \ge n_N$ is less than or equal to

$$\sum_{M=N}^{\infty} \frac{1}{M^2} < \infty$$

Since there are only a finite number of terms with $n < n_N$ the series (2.6) converges. This holds for every N; hence y ϵ X.

But when $n = n_N$ we have $|y_n z_n| \ge 1$. Hence $\sum_{n=1}^{\infty} |y_n z_n|$ diverges so that $z \notin X^{\alpha}$

The conjecture preceding Lemma 1 now follows from the result for $(S\ell_{\infty}(p))^{\alpha}$ by taking

$$X = (S\ell_{\infty}(p))^{\alpha}, a_{n}^{(N)} = \sum_{m=1}^{n} N^{1/p_{m}}$$

3. MATRIX TRANSFORMATIONS

In this section we find necessary and sufficient conditions for A ϵ (S $\ell_{\infty}(p)$, ℓ_{∞}). We need the following lemma.

LEMMA 2. Let $p_k > 0$ for every k. Then

$$(S\ell_{\omega}(p))^{\beta} = \bigcap_{N=2}^{\infty} \left\{ a = \{ a_k \}; \sum_{k=1}^{\infty} a_k \sum_{m=1}^{k} N^{1/p_m} \text{ converges}, \sum_{k=1}^{\infty} | R_k | N^{1/p_k} < \infty \right\}$$

Where $R_k = \sum_{v=k}^{\infty} a_v$.

PROOF. Suppose that $x \in S\ell_{\infty}(p)$. Then there is an integer

$$N > \max\left(1, \sup_{k} |\Delta x_{k}|^{p_{k}}\right) \text{ such that}$$

$$\sum_{k=1}^{n} a_{k} x_{k} = \sum_{k=1}^{n} R_{k} \Delta x_{k} - R_{n+1} \sum_{k=1}^{n} \Delta x_{k}$$
(3.1)

where $n \in \mathbb{N}$.

Since

$$\sum_{k=1}^{\infty} |R_k| |\Delta x_k| \leq \sum_{k=1}^{\infty} |R_k| N^{1/p_k} < \infty,$$

it follows that

$$\sum_{k=1}^{\infty} R_k \Delta x_k \text{ is absolutely convergent}$$

686

Also, by Corollary 2 [3], the convergence of

$$\sum_{k=1}^{\infty} a_k \left(\sum_{m=1}^k N^{1/p_m} \right) \text{ implies that } \lim_{n \to \infty} R_{n+1} \sum_{m=1}^k N^{1/p_m} = 0$$

Hence, it follows from (3.1) that

$$\sum_{k=1}^{\infty} a_k x_k \text{ is convergent for each } x \in S\ell_{\infty}(p).$$

This gives a $\epsilon (S\ell_{\infty}(p))^{\beta}$.

Conversely, suppose that a ϵ $(S\ell_{\infty}(p))^{\beta}$, then by definition, $\sum_{k=1}^{\infty} a_k x_k$ is convergent for each $x \in S\ell_{\infty}(p)$.

Since
$$e = (1,1,1,...) \in S\ell_{\infty}(p)$$
 and $\mathbf{x} = \left\{\sum_{m=1}^{k} N^{1/p_m}\right\} \in S\ell_{\infty}(p)$, then $\sum_{\nu=1}^{\infty} \mathbf{a}_{\nu}$ and $\sum_{\nu=1}^{\infty} \mathbf{a}_{\nu} \left(\sum_{m=1}^{\nu} N^{1/p_m}\right)$

are convergent. By using Corollary 2 [3] we find that

$$\lim_{n\to\infty} R_{n+1} \sum_{m=1}^k N^{1/p_m} = 0.$$

Thus, we obtain from (3.1) that the series $\sum_{k=1}^{\infty} \mathbf{R}_k \Delta \mathbf{x}_k$ converges for each $\mathbf{x} \in S\ell_{\infty}(\mathbf{p})$.

Note that $x \in S\ell_{\infty}(p)$ if and only if $\Delta x \in \ell_{\infty}(p)$. This implies that $R = \{R_k\} \in (\ell_{\infty}(p))^{\beta}$. It now follows from Theorem 2 [4] that

$$\sum_{k=1}^{\infty} |R_k| N^{1/p_k} \text{ converges for all } N > 1.$$

We now find necessary and sufficient conditions for a matrix A to map $S\ell_{\infty}(p)$ to ℓ_{∞} . THEOREM 2. Let $p_k > 0$ for every k. Then A ϵ ($S\ell_{\infty}(p)$, ℓ_{∞}) if and only if

(i)
$$\sup_{n} |\sum_{k=1}^{\infty} a_{nk} \left(\sum_{m=1}^{k} N^{1/p_{m}} \right) | < \infty, N > 1;$$

(ii)
$$\sup_{n} \left[\sum_{k=1}^{\infty} N^{1/p_{k}} \mid \sum_{v=k}^{\infty} a_{nv} \mid \right] < \infty, N > 1.$$

PROOF. We first prove that these conditions are necessary.

Suppose that A ϵ $(S\ell_{\infty}(p),\ell_{\infty})$. Since $x = \left(\sum_{m=1}^{k} N^{1/p_m}\right)$ belongs to $S\ell_{\infty}(p)$, the condition (i) holds. In order to see that (ii) is necessary we assume that for N > 1,

$$\sup_{n} \left| \sum_{k=1}^{\infty} N^{1/p_{k}} | \sum_{v=k}^{\infty} a_{nv} | \right| = \infty.$$

Let the matrix B be defined by $B = (b_{nk}) = \left(\sum_{v=k}^{\infty} a_{nv} \right).$

Then it follows from Theorem 3 [4] that $B \notin (\ell_{\infty}(p), \ell_{\infty})$. Hence, there is a sequence $x \in \ell_{\infty}(p)$ such that $\sup_{k} |X_{k}|^{p_{k}} = 1$ and $\sum_{k=1}^{\infty} b_{nk} x_{k} \neq O(1)$.

We now define the sequence y by

$$y_{k} = \sum_{v=1}^{k} x_{v}(k \in N), y_{o} = 0. \text{ Then } y \in S\ell_{\omega}(p)$$

and
$$\sum_{k=1}^{\infty} a_{nk}y_{k} = \sum_{k=1}^{\infty} b_{nk}x_{k} \neq O(1).$$

This contradicts that A ϵ (S $\ell_{\infty}(p), \ell_{\infty}$). Thus, (ii) is necessary.

We now prove the sufficiency part of the theorem. Suppose that (i) and (ii) of the theorem hold. Then $A_n \in (S\ell_{\infty}(p))^{\beta}$ for each $n \in \mathbb{N}$. Hence $A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$ converges for each $n \in \mathbb{N}$ and for each $x \in S\ell_{\infty}(p)$. Following the argument

used in Lemma 2, we find that if $x \in S\ell_{\infty}(p)$ such that $\sup_{k} |\Delta x_{k}|^{p_{k}} < N$, then

$$|\sum_{k=1}^{\infty} a_{nk} x_k| \leq \sum_{k=1}^{\infty} N^{1/p_k} |\sum_{v=k}^{\infty} a_{nv}|$$
$$\leq \sup_{n} \left[\sum_{k=1}^{\infty} N^{1/p_k} |\sum_{v=k}^{\infty} a_{nv}| \right] < \infty$$

This proves that Ax $\epsilon \ell_{\infty}$. Hence, the theorem is proved.

ACKNOWLEDGEMENT. The authors thank the refree for helpful suggestions.

REFERENCES

- 1. Choudhary, B. and Nanda, S., <u>Functional Analysis with Applications</u>, Wiley Eastern Limited, 1989.
- 2. Garling, D.G.H., The β and γ duality of sequence spaces, <u>Proc. Camb. Phil. Soc. 63</u> (1967), 963-981.
- 3. Kizmaz, H., On certrain sequence spaces, Canadain MAth. Bull. 24 (2) (1981), 169-176.
- 4. Lascarides, C.G., and Maddox, I.J., Matrix transformations between some classes of sequences, proc. Cambridge Phil. Soc. 68 (1970), 99-104.
- 5. Maddox, I.J., <u>Elements of Functional Analysis</u>, Cambridge, 1970.
- Maddox, I.J., Paranormed sequence sapces generated by infinite matrices, <u>Proc. Camb. Phil.</u> Soc. <u>64</u> (1968), 335-340.
- Maddox, I.J., Spaces of strongly summable sequences. <u>Quart J. Math. Oxford 18(2)</u> (1967), 345-355.
- Simons, S., The sequence spaces ℓ(p_v) and m(p_v), <u>Proc. London Math. Soc.</u> (3) <u>15</u> (1965), 422-436.
- 9. Wilansky, A., Functional Analysis, Blaisdell, New York, 1964.
- Zeller, K., Allgemeine Eigenschaften von Limitierunge Verfahren, <u>Math. Z. 53</u> (1951), 463-487.