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ABSTRACT. In this paper we define the sequence spaces S’oo(p), Sc(p) and Sc0(p) and determine

the K6the-Toeplitz duals of Sf(p). We also obtain necessary and sufficient conditions for a matrix

A to map S’(R)(p) to f(R) and investigate some related problems.
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INTRODUCTION.

If {Pk} is a sequence of strictly positive real numbers, then

.(p) {x: sup Xk
k

c(p) --{x" xk-
pk Oforsome t};

Co(p) {x" Ixk p 0}.

For detailed discussion on these spaces we refer [1,4,5,6,7,8].
Recently Kizmaz [3] defined the following sequence spaces:

If Ax (Xk-Xk/l), then

.(A) {x {x#: Ax e . };

c(A) ={x ={x:ZXxec};

Co(A) ={x ={x): Axeco}.

These spaces arc Banach spaces with norm

x 1 Xl[ + Ax

Furthermore, since (R)(A) is a Banach space with continuous co-ordinates (that is, Ix-x | 0

implies Xk Xkl 0 for each k e N, as n oo ), it is a BK-space.
If X is a sequene space, we define [2]
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X a (ak) k[ ak Xk[ < for each x e X };
k=l

X a (ak) akxk is convergent for each x X };
k=l

X and X’ are called the a-(or K6the-Toeplitz) and fl-(or generalized K6the-Toeplitz), dual spaces

of X respectively.

We now define some new sequence spaces. If Ax Xk Xk.1, we define

s.(p) {x (x}. axe .(p) };

Sc(p) {x xk}" axe c(p) };

Sco(p) {x {x}" ax e Co(p)

We observe that if x k(for all k e N) then x e Se(p) but x e(R)(p).

PROPERTIES (i) se(R)(p) and Sc(p) are paranormed spaces with the paranorm

g (X) supk Axk Pk/M where M max (1, sup Pk) if and only if 0 < inf pk < sup Pk < "
(ii) If p {Pk} is a bounded sequence, then Sco(p) is a paranormed space with the paranorm

g(x) sup lAxklpu/M
k

The proof of these properties are similar to the proof given in [6, Th.1].

2. DUALS

THEOREM 1. Let Pk > 0 for every k. Then

(s,.(p))" I"1 Y (Y,): N’" Y, <
N-I n=l m=l

PROOF. We need to prove that (se(R)(p)) is the set of all sequences y such that, for every

positive integer N,

N/p y,I < oo.
n=l m=l

If x se,(p), then by definition,

]AXnl "< N1/P" So
lAXnl p" is bounded, so that, for some N,

m=l

lAXnip" <_ N thus

(2.1)

(by the relation x, Axv)
v=l
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Thus, if

holds, then

(2.2)

Hence, (2.2) is a sufficient condition for y

Conversely, if N is given we can define x

so that(2.2) is necessary for y to be in (Se(p))".

Now we raise the following question"

Is it true that (se(R)(p)) is the set of sequences y such that, for every positive integer N,

nN/P, yl < ? (2.3)

In other words, is it true that

It does not follow at once from Theorem that this conjecture is false, since it is not obvious that

the assertion that (2.2) holds for all N is not equivalent to the assertion that (2.3) holds for all N.

Indeed, there are some sequences {Pn} for which these assertions are equivalent. However, for

general {Pn} they need not be equivalent. We give examples to show that

(A) It is possible to choose {pn} such that there is a y {y} for which (2.3) holds for all N, but

(2.2) does not. Thus (2.3) is not always sufficient.

(13) It is possible to choose {Pn} such that there is a y lot which (2.2) holds for all n, but (2.3)
does not. Thus (2.3) is not always necessary.

EXAMPLE 1. Take

Then take

(1,2,3k
P2k=l/k !

1
Y2k-1 -Y2k 0

Since Y2k 0, it is only the odd terms which contribute to (2.2) or (2.3). For these terms we take

Pn 1 and thus the sum on the left of (2.3) is

2k-1N
kk;l

But for n 2k-l, k _> 2,
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N/ N"- N-.
m=l

Thus the sum on the left of (2.2) is greater than or equal to

EXAMPLE 2. Take

Nk-1
oifN > 1.

Then take

2rr2
(n T,r=2,3,4

Yo
(otherwise) /

In the sums (2.2), (2.3) all the terms vanish except for n 2r, r 2,3,4,... So we need consider only

those terms. If n T, r >_ 2 then there are 2r-(r-1) terms in the sum

N/p" for which Pm 1 so that
m=l

’ NIp,. (T-(r-I))N + N
m=l p =2

But Nkp pN SO that for fixed N

NlOg
=2 =2

p O (r’+1) o (29.

Thus, for fixed N, and n 2 we have

so that

Nlh)" 0(2r)

E N,+. ly.l =0
1

n=l =1 . <

But

n=l r=2= rlN
,-2 r2

(since Nk rlos N)

i.e. forN=3,4,5

=oiflogN_> 1,
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We now consider the second dual of (Se(p)) i.e.(Se(R)(p))

Is it true that

Z: sup

Nl/V=
m=l

In other words, is it true that (S’(R)(P)) is the set of sequences z {z,,} which are such that, for

some N

In order to see that this conjecture is true, we shall first prove a lemma.

LEMMA 1. Suppose that, for each N, {a,ts} is a sequence of positive numbers, and that,

for fixed n, a.ts) is non-decreasing in N. Let X denote the set of sequences {y,} which are such

that, for all N,

Then X" is the set of all (z.} such that, for some N

z. 0 (a) (2.6)

PROOF. The result that (2.6) is sufficient for z X is trivial; for, if (2.6) holds for

some N then since (2.5) holds for all N it holds for that particular N, whence

The result that (2.6) is necessary is not so obvious. Suppose it is false that there is some N for

which (2.6) holds.

Then, for every N,

Zll is unbounded.

Hence, we can determine an increasing sequence {n}of positive integers such that

Now define y {y.} by

Yn ann
0

(n ns, N= 1,2,3

otherwise J
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Now given any fixed N we have for all M _> N

ytl
M M ManMtd) anMtl

(since a.iN) is non-decreasing for fixed n).
The terms in (2.5) for which n is not equal to nM for some M are 0; hence the contribution to (2.5)
of these terms with n _> nN is less than or equal to

M

Since there are only a finite number of terms with n < nN the series (2.6) converges. This holds

for every N; hence y e X.

But when n nN we have ynzn Hence ynz diverges so that z X*
n=l

The conjecture preceding Lemma 1 now follows from the result for ($4(R) (p))a by taking

MATRIX TRANSFORMATIONS

In this section we find necessary and sufficient conditions for A (S’(R)(p), a(R)). We need the

following lemma.

LEMMA 2. Let Pk > 0 for every k. Then

(Sl,.(p))a a a#: at N" converges, Rt N/v’ <
k=l m=l k--I

Where Rk E av"
v=k

PROOF. Suppose that x S’(R)(p). Then there is an integer

where n e N.

Since

N>max(l, SUPk IAxklPk) suchthat

akXk = RkAxk-P-/I Axkk=l k=l k=l

k=l k=l

it follows that

RkAXk is absolutely convergent.
k=l
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Also, by Corollary 2 [3], the convergence of

k

implies that limR/x Nup. 0
m=l

687

Hence, it follows from (3.1) that

akxk is convergent for each x e S.(p).
k--I

This gives a e (se(p)).

Conversely, suppose that a e (Se=(p)), then by definition,

x S..(p).
axt is convergent for each

k;l

Since e (1,1,1 S.(p) andx N
v---I v=l =I

are convergent. By using Corollary 2 [3] we find that

k

Thus, we obtain from (3.1) that the series Rit Axit converges for each x se(R)(p).
kl

Note that x se(R)(p) if and only if Ax e(R)(p). This implies that R {Rk} (e=(p)). It now follows

from Theorem 2 [4] that

converges for all N > 1.

We now find necessary and sufficient conditions for a matrix A to map se(R)(p) to e**.
THEOREM 2. Let pk > 0 for every k. Then A (se(R)(p), e(R)) if and only if

(i) slE am, N’a,- l<oo, N>l;
k:l =I

(ii) NIP any
v--It

< ),N > I.

PROOF. We first prove that these conditions are necessary.

Suppose that A e x-I b longs to se. p), the condition (i)
---=1

holds. In order to see that (ii) is necessary we assume that for N > 1,

N
v=k
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Then it follows from Theorem 3 [4] that B (e(p),e). Hence, there is a sequence x t e(R)(p) such

that suplXklpk and bkxk
, O(1).

k k=l

We now define the sequence y by

k

Yk Xv(k e N), Yo 0. Then y e SQ**(p)
v=l

and akYk bcxk * O(1).
k=l k=l

This contradicts that A e (se(p),e(R)). Thus, (ii) is necessary.

We now prove the sufficiency part of the theorem. Suppose that (i) and (ii) of the theorem

hold. Then A, (.se(p)) for each n e N.

Hence A(x) axk converges for each n N and for each x se(p). Following the argument
k=l

used in Lemma 2, we find that if x e se(p) such that sup IAxl < N, then
k

k=l k=l v=k

This proves that Ax e(R). Hence, the theorem is proved.
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