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1. INTRODUCTION.
If X is a T3.5-ordered space (i.e., an ordered topological space which is %ompletely regular

ordered" in the sense of Nachbin [8]}, then X has a largest T2-ordered compactification oX which

is called the Nachbin (or Stone-ech ordered) compactification. This compactification, introduced

in [8], has been investigated in all of our references except [5].
We are interested in determining when o(X x Y} oX oY, a problem which has not

previously received attention in the literature. The methods used by Glicksberg [5] to solve

the corresponding problem for the Stone-(ech compactification do not appear to be fruitful when

applied to the Nachbin compactification. Therefore, at this preliminary stage of our investigation,

we have focused our attention on the case where X and Y are "totally ordered spaces", where

a totally ordered space is defined to be a totally ordered set with a convex, T2-ordered topology

(not necessarily the order topology}. Our main result, Theorem 5.6, gives a simple condition for

totally ordered spaces X and Y which is necessary and sufficient for o(X Y) oX oY.
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Our solution to the aforementioned problem makes extensive use of the Wallman ordered

compactification woX, introduced in [2]. In Section 3 we show that for any T3.-ordered space X,

oX can be obtained from woX via a certain quotient construction, and this result is employed

in the proof of our main theorem. We also make use of the fact that woX [oX for any totally

ordered space X.
We first prove a preliminary version of our product theorem in Section 4 under the assumption

that the totally ordered spaces X and Y are %trictly first countable". (A totally ordered space is

defined to be strictly first countable if every neighborhood filter and every maximal closed-convex

filter has a countable filter base.) Surprisingly, the condition which works" in the strictly first

countable case also works" in the general case (see Theorems 4.4 and 5.6). If X and Y are

strictly first countable, then o(X x Y) [oX [oY and Wo(X Y) woX woY are equivalent

statements. We do not know if this equivalence holds for arbitrary totally ordered spaces X and Y.

2. PRELIMINARIES.
Let {X,_<) be aposet. Fora non-empty subset A of X, we define d(A) {y e X y <

x for some x E A} to be the decreasing hull of A; the increasing hull i(A) is defined dually.

We shall write d(x} and i(x} in place of d({x}} and i({x}}. A set A is i,creasing (respectively,
decreasing) if A i(A} (respectively, A d(A}}; a set which is either increasing or decreasing is

said to be monotone. For any A C_ X, A^ i(A} N d(A} is called the convex hull of A, and A is

convex if A A^.
Let F(X) denote the set of all filters on a set X. We always use the term filter o mean a

proper set filter. If .T and . are filters on X such that F n G # , for all F E Y and G C ., then

r y denotes the filter generated by (F N G" F e ’, G e .); if, on the other hand,
contain disjoint sets, we say that " v . [ails to exist. A filter " is ]tee if there is no point common

to all the sets in .T. A filter which is not free is said to be fixed; in particular, the symbol will

denote the fixed ultrafilter generated by x G X. For any filter Y on X, the filter ’^ generated by

sets of the form {F^ F E .T} is called the convex hull of ’.
An ordered terpalogical space, or simply an ordered space, is a triple (X, _<, r), where (X, <) is

a poser and r a eanvex topology on (X, <_} (i.e., r is a topology which has a subbase consisting

of monotone open ets). Note that every ordered space is locally convex in the sense that every

neighborhood filter has a base of convex open sets. When there is no danger of confusion, we refer

to the ordered space (X, <, r} simply as X. If X and Y are ordered spaces, a map f X Y is

increasing (respectively, decreasing) if x < y in X implies f(x) <_ f(y) (respectively,
in Y. A continuous, increasing map is called an ordered topological morphism, or more briefly a

morphisrn. A b]jective morphism whose inverse is also a morphism is called an ordered $opological

isomorphism, or more briefly an isomorphism. Let VI’(X) (respectively, CD’(X)) denote the set

of all morphisms (respectively, continuous, decreasing maps} from an ordered space X into [0, 1].
An ordered space X is T-ordercd if i(x} and d(x} are closed sets, for all x X; X is T-ardered

if the partial order relation _< is closed in X x X. An ordered space X is T.s-ordered (completely
regular ordered in [8]) if the following conditions are satisfied: (1} If x X, A is a closed subset
of X, and x A, then there is f CI’(X) and g CD’(X) such that f(x) g(x} 0 and

f(y) v g(y) 1, for all y E A; (2) If x y in X, there is f CI’(X) such that /(y} 0 and

f(x) 1. The T3.-ordered spaces are precisely those which allow T-ordered compactifications

(see [3] and [8]}. An ordered space X is normally ordered (see [8]} if, whenever A and B are

disjoint closed sets, with A increasing and B decreasing, there are disjoint open sets U and V,
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with b increasing and V decreasing, such that A C_ U and B C_ V. An ordered space which is

both normally ordered and Tl-ordered is said to be T4-ordered.
Given a Ts.s-ordered space X, there is a largest T2-ordered compactification of X called the

Naehbin (or Stone-ech ordered) cornpaetification, denoted by [3oX. The standard construction of

/9oX involves embedding X in the "ordered cube" [0, 1] ct’(x) where the latter space has the usual

product order and topology. This compactification is characterized by the following well-known

exnion orem Oee [] or []).

THEOREM 2.1. If X is a Ts.s-ordered space, Y is a compact, T2-ordered space, and f X Y
is a morphism, then there is a unique morphism j-r ./oX y such that the diagram

X

ex

\ Y

commutes, where ex X --/3oX is the canonical embedding.

We next review the construction of the Wallman ordered compactification. Let X be an

oderd p=e ana X; e () (repey, ()) b hml dod, dr=.g (re-
spectively, closed, increasing) set that contains A. Let Aa I(A) q D(A); if A Aa then A
is called a e-set. One may verify that the collection of all e-sets on X is closed under arbitrary

intersections. It is obvious that e-sets are dosed and convex, but not all closed, convex subsets
of X are e-sets. If jr G F(X), let D(jr) (respectively, I(jr)) denote the filter on X generated by

{D(F) F G jr} (respectively, {I(F) F jr}). The filter jra 1(jr) v D(jr) is generated by sets

of the form ava, for av jr; if jr jra, then jr is called a e-filter. One may easily verify (using
Zorn’s Lernma) that every e-filter is coarser than a maximal e-filter.

Let X be a Trordered space, and let WoX be the set of all maximal e-filters on X. A partial
order "<" for WoX is defined as follows: jr < = I(jr) C # and D() jr. We also assign to

woX the topology with closed subbase g {A A aa}, where A
Then woX, with the order and topology just described, is an ordered space which is compact and

T (but generally not T-ordered). Ifx X WoX is defined by x(z) 5, for all z G X, then

x is an isomorphic embedding, and consequently (WoX, x) is an ordered eompactification of
X. Furthermore, we have the following extension property (see [2] or [6]).

THEOREM 2.2. Let X be a T-ordered space, Y a compact, T2-ordered space, and f X -- Ya morphism. Then there is a unique morphism jz. w,X Y such that the diagram

X

Ox woX

\ Y

commutes.

An ordered space X is defined to be a c-space if i(A) and d(A) are closed subsets of X when-
ever A _C X is a c-set. The next theorem is proved in [6].

THEOREM 2.3. For a Ts.s-ordered space X, the following statements are equivalent.
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(I) woX is T-ordered
() ,,,ox oX
(3) X is a T4-ordered c-space.

3. /oX AS A QUOTIENT OF woX.
Throughout this section, X will denote an arbitrary Ts.s-ordered space and (woX,) the

Wallman ordered compactification of X.
If f E CI’(X) then there exists, by Theorem 2.2, a unique morphism f^ woX [0, 1]

extending f. We define an equivalence relation on woX as follows: {(r, ) E woX x

woX f^(’) f^(.), for all f CI’(X)}. The set {[}’] " 6 woX} of E-equivalence

classes is denoted by woX/; let a woX woX/ be the canonical projection map. We en-

dow woX/ with the quotient topology derived from woX and a, and with the partial order

[Y’] 5 [.] => f^() <_ f^(.) in [0,1], for all f 6 CI’(X). The set woX/, with this order

and topology, is an ordered space which, for convenience, we shall call #oX. One easily verifies

that a "woX oX is a morphism.

LEMMA 3.1. oX is a compact, T-ordered space.

PROOF. Obviously, #oX is compact. We recall (see [8]) that an ordered space is T-ordered
whenever z y, there are disjoint neighborhoods U and V of x and y, respectively, such

that U is increasing and V is decreasing.
For each f CI’(X), define f’: oX [0, 1] by f’([]) fA(), for all [ff] 6 oX; it is

ey to verify that f’ is a well defined morphism, nd therefore (f’: f UI*(X)) CI*(oX).
[] [], there is f UI’(X) such that f() f() in [0, 1], d hence f’([Y]) >

f’([]) in [0, 1]. Let f’([])- f’([]) > 0, d let U (ff)-((ff([])- e/3,1]) and

V (f’)-([0, ff([]) + e/3)). Then U d V e disjoint open nieghborhoods separating [Y] and

[] such that U is increing d V decreeing. Therefore poX is Tz-ordered.

By Theorem 1.2, there is a unique morphism ’woX oX such that the diagram

/
x
\ oX

coutes. Also, for y f CI’(X), there is a unique f CI’(oX) such that f f o e. Note
that fA f o , since thee maps agree on the dense subspace (X) of woX, d hence on woX.

LEMMA 3.2. For Y’, . woX, (Y’, ) .(Y’) (.).

PROOF. If (.,,) , then f^(r) f^(Q), for all f C!(X), and hence f(())
/(()) for all f CI’(X). This implies eCY) (), since oX is T3.s-ordered and hence

eI’(ZoX) {f f uP(X)} separates points in oX. Conversely, if () (), then

fA() f(@()) =/(()) fA() for all f CI’(X), which implies (, ) .
THEOREM 3.3. For any T3.s-ordered space X, oX and oX are isomorphic.
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PROOF. Let e’’#oX floX be defined by e’([’]) g’(’), for all woX.
woX -& #oX

x / % I"
% ox

I follows from Lemma 3.2 tha " is a well-defined bijection. Since #oX h the quotient

topology induced by and " o is continuous, e" is continuous. Since #oX is compac and

oX is T, " is a homeomorphism.

To cheek that e’ is an order-isomorphism, let [Y] [] in #oX. Then, for all I C CI’(X), ()
I() i [0, 1, ah [(()) ((5)), fo I cI’(X). Th () () i oX,

and consequently e’Ca(7)) e’([T]) e’([]) e’Ca()). This argument is reversible, and

consequently both e" d (e’)- are increing maps.

4. A PRELIMINARY PRODUCT THEOREM.

Compactifications of totally ordered spaces are studied in [I] and [7], and we begin this section

by summarizing some relevent results from [7]. We define a totall!/ordered space X to be a T2-
ordered space whose partial order is a total order (i.e., if z, /E X, then z <_ /or l/ _< z). It is

easy to show that a totally ordered space is a T4-ordered c-space in which the c-sets are precisely

the closed, convex sets. Consequently, by Theorem 2.3, the compactifications woX and floX of a

totally ordered space X exist and are equal. Furthermore, every T2-ordered compactification of a

totally ordered space is itself a totally ordered space.

For a totally ordered space X, we use the equivalence of floX and woX to describe the com-

pactification points of [3oX as maximal c-filters. It is shown in [7] that, in a totally ordered space

X, the maximal c-filters are precisely the convex hulls of ultrafilters; the non-convergent maximal

c-filters on X are called singularities. Given a singularity , let T t3{FT F E 7}, where F
denotes the set of upper bounds of F, and yt U{Ft F C }, where F is the set of lower

bounds of ’. The convex sets and )’t partition X, and so exactly one of these sets is in 7. If

’t " (respectively, ’t ’) we say that . is a decreasing (respectively, increasing) singularit!t.

A totally ordered space X is strictll first countable if every neighborhood filter and every

singularity has a countable filter base. If . is an increasing singularity with a countable filter

base, then there is a strictly increasing sequence Zl < z < z3 < in X such that is the

convex hull of the filter of sections of (z); similarly, each decreasing singularity with a countable

filter base is likewise derived from a strictly decreasing sequence in X.
If X and Y are totally ordered spaces, then X x Y (with the product order and product

topology) is a T3.s-ordered space, but not generally a c-space. For instance, it is shown in [4]
that if X is the real line with the usual order and topology and Y is any totally ordered space

whose underlying poser is the real line, then X Y is a c-space the topology for Y is the

usual topology. Thus, in general, wo(X Y) fails to be Tz-ordered and hence wo(X x Y) and

[3o(X Y) are non-equivMent eompaetifieations (see Theorem 2.3). The next two lemmas are due

to Margaret A. Gamon.

LEMMA 4.1. If X and Y are totally ordered spaces, A a c-set in X, and B a c-set in Y, then

A B is a c-set in X Y.

PROOF. It is clear that i(A x B) i(A) x iCB). Since totally ordered spaces are c-

spaces, i(A) and d(A) are both closed, and so i(A) I(A) and d(A) D(A). Therefore,
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i(A B) I(a) I(B) is a closed, increasing set containing A x B, and hence i(a B)
I(AB) I(A)I(B). Similarly, D(AxB) D(A)D(B), and therefore I(AxB)nD(AB)
(I(A) x I(B))63 (D(A) D(B)) (I(A)n D(A)) (I(B) D(B)) A B. Thus A x B is a

c-set in X x Y.

LEMMA 4.2. Let X and Y be totally ordered spaces, and let jr be a singularity on X and. a singularity on Y such that either both are increasing singularities or both are decreasing

singularities. Then jr . is a maximal c-filter on X Y.

PROOF. Assume that jr and are both increasing singularities on X and Y, respectively.

By Lemma4.1, jr 6 is a c-filter on X Y. Let X {x E X < jrinwoX} and Y’
{y E Y < in ToY} be totally ordered subspaces of X and Y, respectively. Let jr’ and

be the restrictions of jr and . to X and Y, respectively. It is easy to verify that jr and . are

increasing singularities on X’ and Y’, respectively, and that (jr,}r (06’}r 0. It is also easy to

verify that jr . is a maximal c-filter on X Y == jrw 6 is a maximal c-filter on X Y.
Therefore we shall assume, without loss of generality, that jr and are increasing singularities

on X and Y, respectively, such that jrr 0.
Let be a c-filter on X Y such that jr . C_ )/. Let H )/ be a convex set, and let

(a, b) H63(F G),where F jr andG . For anyeEXandd Ysuchthat a<c and

b < d, we must have (c, d) C H, since otherwise i(c) i(d) would be a member of jr . disjoint

from H. This implies that i(a) i(b) C_ g. But i(a) i(b) C jr , and so C_ jr . It follows

that jr ., and consequently jr is a maximal c-filter on X Y.

In general, the conclusion of Lemma 4.2 is not valid if one of the singularities is increasing and

the other decreasing. Indeed, the next lemma establishes that if jr is an increasing singularity
on X and , a decreasing singularity on Y, both with countable filter bases, then jr x . is not a

maximal c-filter on X x Y.

LEMMA 4.3. Let X and Y be totally ordered spaces. Let (x.) be a strictly increasing se-

quence in X and (y,,) a strictly decreasing sequence in Y. Let S {(x2r,-l, y2,,_)’rt e N) and

T {(xz, yz,.,)’n G N}. Then there is g e CI’(X Y) such that g(i(S)) 1 and g(d(T)) O.

PROOF. Choose xo X such that Xo < x. (In case x is the least element of X, replace the

original sequence (x) by (x’), where x x.+,.) Since X and Y are both T4-ordered spaces, we

can apply Theorem 1, page 30, [8] to obtain, for each rt C N, a function fzr,- CI’(X) such
that fz,.,-(a) 0 if a < x2._ and f,.,_(b) 1 if b >_ x._, and another function f,., CI’(Y)
such that f2,.,(c) 0 if c _< yz and f(d) 1 if d

We next define a family of functions in CI’(X x Y) as follows"

H(, ) (fxC)f()) ^H4Cx, y) [g(x, y) + f3(x)f4(y)] A 1

H,,.,(x, y)

For k C N, we define S2k-t {(xn-t, Y2n-1) n < k) and T2t: ((x._,.,, y2.) n < k}. It is

easy to verify that H2:(d(T’)) 0 and Ht,(i(S:tt:-’)) 1.
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Finally, let

(, ) [((, ) + f+C)f+()) ].

It is clear that g is an increasing map from X Y into [0, 1] such that g(z, y) 1 if (z, y) E

i(S) and (z, y) 0 if (z, y) E d(T). By considering the possible cases, one may also verify that

for every (z, y) X Y, #(z, y) is the infimum of the constant function 1 and a finite sum of

continuous functions. Thus g CI’(X Y), as desired.

In the proof of the next theorem we will need some additional notation. Let X and Y be

totally ordered spaces, and consider the following diagram:

e oCXxr) #/z woCXxY)
XxY / a’ XxY -a oXxoY ’, woXxwoY

where, in the notation of Section 2, e exxY, a ex x er, #xxr, and #x x #r are the

canonical embedding maps. Since woX oX and woY oY, oX x floY woX x woY is a

compact, T2-ordered space, and a’ and 9 are the unique, continuous, increasing extension maps

whose existence is guaranteed in Theorems 2.1 and 2.2.

Observe that /(X x Y) /oX x/og (respectively, wo(X x Y) woX x wog) o’
(respectively, ) is an injective map.

THEOREM 4.4. If X and Y are strictly first countable, totally ordered spaces, then the

following statements are equivalent.

1) woX x woY wo(X x Y).
(2) oX x oY :/o(X x Y).
(3) If either X or Y has an increasing (or decreasing) singularity, then the other space con-

tains no strictly decreasing (or strictly increasing) sequence.

PROOF. (1) = (2). For totally ordered spaces X and Y, IoX woX and oY woY. Thus

wo(X Y} oX oY, and the latter space is T2-ordered. By Theorem 2.3, wo(X Y)
o(X x Y) oX x Y.

(2) = (3). Assume X has an increasing singularity .q and that Y contains a strictly decreasing
sequence (yn). Note that is a compactification point in oX woX. If (y,) converges to yo

in Y, then we define "7 (,or(yo)); if (y,) fails to converge in Y, let N be the decreasing
singularity in Y which is the convex hull of the filter of sections of (,), and let 7 (.q,)/). In
either case, "7 is a compactification point of oX x oY.

Next, let (z,) be a strictly increasing sequence in X obtained by choosing a denumerable,
nested filter base {G, :n E N} for . and choosing z, E ,, for all n 6 N, such ha z < z <
za < Then clely is he conv hull of the filer of sections of the sequence (z,).

Csider he filer ofaecfions ofhe sequence (z,, y,) on X x Y; le be he filer generated
by he subsequence (z,-t, y-) d he filer generated by he subsequence (,, y,). If
S {(2n-,, Y2n-1) : N} d T {(x,, y,):n N}, then S and T 6 . Regdless
of whether or not (y,) converges in Y, a(Y) (d hence also a(fa)) converges to in oX x oY.

Let 1 d be mimal c-filters on X x Y such that a and a . By Lena
4.3, there is g e CI*(X x Y) such that g(i(S)) 1 d g(d(T)) 0. Since g-l({1}) e 1 and

g-l({0}) 6 , it follows that g(l) converges to 1 d g(2) converges to 0 in [0, 1]. Using
Theorem 3.3, we identi &(X x Y) with the quotient space 0(X x Y); thus we regard the
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-equiva|ence c|asses [i] and [.12] (defined in the second paragraph of Section 3) as elements

of fl0(X x Y). Since g^(l) # gA(2) (where gA CI’(wo(X x Y)) is the unique extension

of g CI’(X x Y)), [] and [] are distinct equivalence closes (i.e., distinct elements in

o(X x Y)). But a(,) and a() are both finer than a(a), so both of these filters converge

to in fl0(X x Y). Thus a’([]) a’([]), and consequently a’ is not injective.

(3) (1). If neither X nor Y has a singularity, then X and Y are both compact, and so

X x Y woX x ToY wo(X x Y).
Assume that woX x ToY contains a compactification point (,). We will show that

-(q) is a singleton in wo(X x Y), implying that is injective. There are three possible ces

to consider. If is a singularity in X and a singularity in Y, then Condition (3) and the

sumption of strict first countability for X and Y imply that and are either both incre-

ing singularities or both decreeing singularities. By Lemma 4.2, x is a mimal c-filter on

X x Y. Thus -(q) {7 x } is a single compactification point in wo(X x Y). If is a

singularity and r(Y) for some y Y, then one eily verifies that 7 x 9 is a non-convergent

mimal c-filter on X x Y, and -() { x 9} is again a singleton compactification point

in wo(X x Y). The same reoning applies if is a singularity in Y and x(x) for some x X.

We conclude that the quotient map -’wo(X Y) woX x ToY is injective, and therefore

wo(X x Y) woX x woY.

If X is the real line with any convex, T2-ordered topology and Y is any strictly first countable,
totally ordered space, it follows from the preceding theorem that /o(X x Y) oX x/oY iff

Y is finite. If N is the set of natural numbers with the usual order and the discrete topology,

o(N x N) oN x/oN follows by Theorem 3.4; note that N x N is not pseudo-compact and

thus/(N N) N x /N. If, on the other hand, N is the set of negative integers with

their usual order and the discrete topology,/o(N x N) /oN x/oN. Indeed, it is easy to see

that/oN x oN has cardinality bo, whereas it can be shown that/o(N x N has cardinality 22

5. THE PRODUCT THEOREM.
Throughout this section, the symbols X and Y will represent arbitrary totally ordered spaces.

Our main theorem (Theorem 5.6) establishes that Condition (3) of Theorem 4.4 (stated in slightly

different terms) is necessary and sufficient for/o(X x Y) oX x/oY in the general case. The

proof of Theorem 5.6 is based on five rather technical lemmas, for which we need some additional

notation and terminology.

Let " be an increasing singularity on X and f an ordinal number. Recall that " is also a

compactification point in woX IoX. We say that ,z has order if there is a strictly increasing

net (x^)^< on X such that the net (^)^< in/oX converges to r, and is the least such ordinal.

The order of a decreasing singularity on X is defined dually. If is the order of any singularity

on X, then clearly is an infinite ordinal and the least ordinal of its cardinality. In a strictly first

countable, totally ordered space, every singularity has order w, the least infinite ordinal.

Next, let y E Y. If no strictly increasing net in Y converges to y, we say that y has left order

0. If for some ordinal , there is a strictly increasing net (y^)^< converging to y in Y and is

the least such ordinal, we say that y has left order . The right order for y is defined dually.
Ifz E Y and y < z, let [y,z] {a Y "y < a <_ z}, [y,z) {a Y y <_ a < z}, and

(y,z] {a Y’y < a < z}. Ify Y has left orderp > 0 and (y^)^<p is a strictly increasing
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net converging to y, we denote by "l)t(y) the filter on r generated by {[y^,y] A < p}; "lit(y) is

called the left neighborhood filter at y, and we set "t(y) in case p 0. Likewise, if y has right

order > 0 and (z^)^< is a strictly decreasing net converging to y, the right neighborhood filter
V.(y) is generated by {[y,z^] A < }; again we set Vr(y) if 0. Furthermore, if > 0

we denote by );(y) the filter on Y generated by {(y,z^] A < }. Note that )t(y) n Yr(y) is the

usual neighborhood filter at y.

We shall also need additional interval notation pertaining to singularities. If jr is an increasing

singularity on X and z E X is such that $ < jr in woX, we define [z, jr) {a E X z < a in

X and h < jr in woX} and (z, jr) [z, jr)\{z}. In ease is a decreasing singularity on Y and

y Y is such that . < in woY, let (.,y] {a Y" a < y in Y and . < h in woY} and let

(.q,y) (.,y]\{y}. If jr has order and (z^)^< is a strictly increasing net such that (:^)^<
converges to jr in woX, then each of the sets {Ix^, jr) A < } and {(z^, jr) A < (} is a filter

base for jr. Likewise, if . has order rt and (y^)^<. is a strictly decreasing net in Y such that

(0h)^<. converges to . in woY, then each of the sets {(.,U^] A < r/} and {(.,U^) A < r/} are

filter bases for .
LEMMA 5.1. Let jr be an increasing singularity on X of order > w, let . be a decreasing sin-

gularity on Y of order r/> w, and assume that every strictly increasing sequence on X and every

strictly decreasing sequence on Y is convergent. If/ and are maximal c-filters on X Y, both

finer than jr x 6, then for all f CI(X x Y), f() and f() converge to the same limit in [0, 1].

PROOF. Suppose there is f CI’(X x Y) such that f(} converges to a, f() converges to

b, and a b in [0, 1]. Let U and V be disjoint neighborhoods of a and b, respectively, and choose

closed sets L E and M such that f(L) _C U and f(M) C_ V. Then, choose the following
points in X Y

Continuing in this way we obtain sequences (a., b,.,) in L and (c., d.) in M such that

ao < co < al < Cl < < an < cn <
bo > do > bl > d > > b, > d,, >

Under the assumptions of the lemma, the sequence ao, co, al,cl, converges to some Xo in X,
and the sequence bo,do, b,d,.., converges to some yo in Y. Thus (xo, yo)

_
L f3 M, contrary to

the fact that f(L) f(M) .
LEMMA 5.2. Let jr be an increasing singularity of order > w on X, and let y Y have right

order r/> w. Assume that every strictly increasing sequence on X and every strictly decreasing

sequence on Y is convergent. If and are maximal c-filters on X Y, both finer than jr x )(y),
then for all f CI(X Y), f(.) and f(t) converge to the same limit in [0, 1].

PROOF. The proof of Lemma 5.2 is essentially identical to that of Lemma 5.1.
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LEMMA 5.3. Let be an increasing singularity on X of order > w and let y Y have left

order rt :> 0. If is a maximal c-filter on X Y finer than 27 e(y), then .M .T .
PROOF. Let (Yu),< be a strictly increasing net on Y converging to y; thus )t(Y) has a filter

base {[Yu,Y] # < r/}. Note that 27 has a filter base of the form {Ix^, 27) A < }, where (x^)^<
is a strictly increasing net in X.

Choose ac-set M .M such that [Xo,.7") [yo,y]

_
M. For each A < and# < r, there is

(a^u,b^,) M N (Ix^, :7) [y,, y]). Let (a, b) M be arbitrary; we shall show that (a, y) M.

If b y there is nothing more to show, so assume the contrary, and choose ordinals p < r/ and

r < such that b < yp and a < x,. Then (a, b) < (a, b,p) < (a,a, b,a), and so by convexity of M,

(a,b,,) M. Since y, <_ b,.,, (a,y,,) M. Indeed this reasoning implies that (a, y,) M for

all < rt such that p < u. Since M is closed, (a, y) M. Using again the convexity of M, we

deduce that [a, 27) x {y} C_ M and that [a, 27) ,v. Thus .7 > , and since both are maximal

c-filters, equality holds.

LEMMA 5.4. Let " be an increasing singularity on X of order _> w, and let y Y have

right order rt > w. If rt and is amaximalc-filteronX Y finer than ’x r(y), then

,= x .
PROOF. Let (x)<e be a strictly increasing net in X such that {[x,.v) A < } is a filter

base for ’. Let (Yv),<, be a strictly decreasing net in Y converging to y such that {[y,y,] <
is a filter base for "Vr(y). Let M )[ be a closed, convex set such that M C_ [Xo, .7) [y, yo].

CASE 1. rt < . If 0 <_ A < rt, choose (ax,b,) M N ([xA,.T) [y, yA]) such that

is strictly increasing in X and (bx)A< is strictly decreasing in Y. Next, choose ordinal p such

that r < p < , and choose (aa,ba) M N [xa, ) [y, yo] such that a < ap, for all A < r/. Let

A {A < rt "bx < ba}. Using the convexity of M, (a,,b,) M, for all A A and (a,,b,) M
implies that (a,,,bx) M, for all A A. Since (bx)eA converges to y in Y and M is closed,

(ap, y) M. This reasoning leads to the conclusion that Ida, ) {y} C_ M, and hence 27 >:

CASE 2. < ft. For each A < r, choose (a,,b,) M [Xo,’) x [y,y,] such that (bx)A<, is

strictly decreasing; thus (bx)<n converges to y in Y. For each A < rt, let ux be the least ordinal

such that a < x. Note that { A < rt} C_ {p p < }. Considering the net (x,)<, we

observe that since each # < , there is some {A A < #} such that the term xa occurs

times in the net (x,)<,, where Irtl is the cardinality of r.
Now choose a point (a, b) M such that a > xa. Then a > a, for all A </ such that p .

IrA- {A < rt #A}, then ]A ]r/] and (b)eA converges to y in Y. We shall show that

(a,y) M. Assuming b # y, let h’= {A A’b < b}; then IA’] Irti and (b,),e,, converges to

y in Y. Using the now familiar argument based on M being closed and convex, we deduce that

(a, y) M. This argument can again be extended to show [a, F) x {y} C_ M, where [a, F)
and consequently " x .
LEMMA 5.5. Let 27 be an increasing singularity on X of order > 0, and let y Y have right

order . If is amaximal c-filter onXY finer than .7x’l)r(y), then for all f CI(XY), f(.M)
and f(27 ) converge to the same limit in [0, 1].

PROOF. Assume " has filter base {[x, :7) ,X < } as in the preceding proof. Suppose there
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is / CI’(X Y) and #,i _> r r(y) such that f( ) converges to [0, I] and

converges to some point n [0, I] other than . Snce # x , t follows that x ().
We shall obtain a contradiction by constructing a mml c-filter x () such that, for

each L , f(L) ntersects every neghbhorhood of a n [0, I]. It follows that f() converges

to n [0, I] and hence, by Lemma 5.2, () converges to , a contradiction.

Let {U "m } be a nested neighborhood be for [0, I], where each s a closed

nterval. Snce y( x ) converges to a and f > , we can find < such that [z, > d

[x,> {} C, where C {U’ N} is a c-set in X r. Let A {A’p A < }. Let

()< be a strictly decreeing net converging to in . For each A A, there is p < f such that

(z,z) C, for all z [,]. Choose a strictly decreeing net () such that , [,)
for all A A; then (y,) converges to y and (z,,) is a net in C. Let be the filter of

sections of the net (z,9,), and let be y mimal c-filter finer th I() O().
Since C is a c-set, C and hence C . Thus f() converges to a in [0, 1]. Since each set

of the form [z, Y> x [y, y], for < f, contains an element of the net (z,9), is finer than

the c-filter Y x (y), and consequently Y x (). To complete the proof, it remains

to show that # Y x , and therefore that Y x (y).
Y x , then each S contains a set of the form F x {y} for some F

Let S K, where K h the form K {(z,y) A } for some A. If a

set of the form F x {y} K for some F Y, then there is an ordinal such that

[z,> F; thus [z,Y) {y} K. Let be any ordinal such than < < f. Then

O {(z,z) z z} {(z,z) z y,.} is a c-set in X x Y containing K, d therefore K O.

But [z, z) x {y} O , d so [z, > x {y} K. The sumption that Y x is hereby

contradicted, d the proof of the lena is complete.

THEOREM 5.6. Let X d Y be totally ordered spies. Then o(X x Y) oX x oY
the following condition (.) is satisfied: (*) either X or Y contains an increing (or decreeing)

singulity of order w, then the other space contains no strictly decreeing (or strictly increing)

sequence.

PROOF. o(X x Y) oX x oY, the proof that (2) (3) in Theorem 3.4 establishes

condition (*).
Conversely, sume (*) and consider the diagrm

wo(XxY) o(XxY)
XxY

To show o(X x Y) oX x oY, it is sumcient to show that (’)-’() is a singleton for each

comptification point in oX oY. Two ces must be considered.

CASE 1. (Y, 9), where Yd 9 e singulities on Xd Y, rpectively. Y d e

either both increing or both decreeing, it follows by Lena 4.2 that (’)-() is a singleton.

So, without loss of generality, sume that Y is increing singulity of order f and is a

decreeing singulity of order . f , then the istence of a decreeing singulity on Y
implies the existence of a strictly decreeing sequence in Y, contrary to condition (*). Thus there

is no loss of generality in suming > w; we also sume, in view of (*), that every strictly

increing sequence on X converges in X d every strictly decreeing sequence on Y converges
in Y.

The preceding observations allow us to conclude, using Lemma 5.1, that if and are in
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-l(a), then for all f CI’(X x Y), f(/) and f(31) converge to the same limit in [0, 11. Thus,
by Theorem 3.3, e(/) e(N) in o(X x Y); in other words, (a’)-l(a) is a singleton.

CASE 2. a (jr,.), where one member of this pair is a singularity and the other a fixed

ultrafilter. Without loss of generality, we assume that jr is an increasing singularity of order

_> o, and ), where y E Y has left order p _> 0 and right order r/_> 0.

We first observe that Jr x ) is a maximal c-filter on X x Y and obviously Jr x
To complete the proof, it is sufficient to show that if 31 is any maximal c-filter on X x Y finer

than J" x (4(y)C "l)t(y)), then f(31) and/,(jr x 9) converge to the same limit in [0, 1] for all

f CI’(XxY); then the desired conclusion that (a’)-I (a) is a singleton follows, as in Case 1, from
Theorem 3.3. Furthermore, since q4(y) and 34(y) are both c-filters on Y, 3t _> )" x (4(y) C Vt(y))
implies either 3t >_ Jr x 3),(y) or 31 >_ Jr x 3)(y).

If 3t is a maximal c-filter finer than jr x "l)(y), it follows by Lemma 5.3 that N jr x 9, and

the conclusion is trivial. We thus assume, for the remainder of the proof, that 3l >_ jr x q4(y). If

r/ 0, then again 31 Jr x ) and the proof is complete. If r/ _> w, we observe that Y contains
a strictly decreasing sequence; thus by condition (*), > w, and furthermore every strictly in-

creasing sequence on X must converge. The existence of the increasing singularity Jr on X also
implies that every strictly decreasing sequence on Y must converge. We now apply Lemmas 5.4

and 5.5. If r, then 31 jr x 9, and if r > w, then f(31) and /(jr x 9) have the same

limit in [0, 11 for all f e CI’(X x Y). Thus, under all circumstances, (a’)-’(a) is a singleton,
and the proof of the theorem is complete.

For totally ordered spaces X and Y, one can show that if X x Y is pseudo-compact, then
neither X nor Y has a singularity of order w. Thus it follows by Theorem 5.6 that if X x Y is

pseudo-compact,/oX x BoY o(X x Y). The converse is false, as we showed at the end of
Section 4.
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