EXISTENCE THEOREMS FOR A SECOND ORDER m-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

CHAITAN P. GUPTA

Department of Mathematics University of Nevada, Reno Reno, NV 89557

(Received October 15, 1993 and in revised form May 3, 1994)

Abstract

Let $f : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function satisfying Caratheodory's conditions and $e(t) \in L^1[0,1]$. Let $\eta \in (0,1), \xi_i \in (0,1), a_i \ge 0, i = 1, 2, \cdots, m-2$, with $\sum_{i=1}^{m-2} a_i = 1, 0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1$ be given. This paper is concerned with the problem of existence of a solution for the following boundary value problems

 $\begin{aligned} x''(t) &= f(t, x(t), x'(t)) + e(t), 0 < t < 1, \\ x'(0) &= 0, x(1) = x(\eta), \\ x''(t) &= f(t, x(t), x'(t)) + e(t), 0 < t < 1, \\ x'(0) &= 0, x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i). \end{aligned}$

Conditions for the existence of a solution for the above boundary value problems are given using Leray Schauder Continuation theorem.

Keywords and Phrases: three-point boundary value problem, m-point boundary value problem, Leray Schauder Continuation theorem, Caratheodory's conditions, Arzela-Ascoli Theorem.

AMS(MOS) Subject Classification: 34B10, 34B15, 34G20.

1 INTRODUCTION.

Let $f: [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function satisfying Caratheodory's conditions, $e: [0,1] \to \mathbb{R}$ be a function in $L^1[0,1]$, $a_i \ge 0$, $\xi_i \in (0,1)$, $i = 1, 2, \cdots, m-2$ with $\sum_{i=1}^{m-2} a_i = 1$, $0 < \xi_1 < \xi_2 < \cdots$, $< \xi_{m-2} < 1$ and $\eta \in (0,1)$ be given. We study the problem of existence of solutions for the following boundary value problems

$$\begin{aligned} x''(t) &= f(t, x(t), x'(t)) + e(t), \ 0 < t < 1, \\ x'(0) &= 0, \ x(1) = x(\eta), \end{aligned} \tag{1}$$

$$\begin{aligned} x''(t) &= f(t, x(t), x'(t)) + e(t), \ 0 < t < 1, \\ x'(0) &= 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i). \end{aligned}$$

It is well-known, (see, e.g. [1]), that if $x \in C^1[0,1]$ satisfies the boundary conditions in (2), with the a_i 's as above, then there exists an $\eta \in [\xi_1, \xi_{m-2}]$, depending on $x \in C^1[0,1]$, such that

$$\boldsymbol{x}(1) = \boldsymbol{x}(\eta). \tag{3}$$

Accordingly, it seems that one can study the problem of existence of a solution for the boundary value problem (2) using the a priori estimates obtained for the three-point boundary value problem (1), as it was done in [2], [3], [4]. But here the m-point boundary value problem (2) happens to be at resonance in the sense that the associated linear homogeneous boundary value problem

$$\begin{aligned} x''(t) &= 0, \ 0 < t < 1, \\ x'(0) &= 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i). \end{aligned}$$

has x(t) = A, $A \in R$, as a non-trivial solution, since $\sum_{i=1}^{m-2} a_i = 1$. The result is that $e(t) \in L^1[0,1]$ has to be such that $\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i)e(s)ds + \int_{\xi_i}^1 (1-s)e(s)ds] = 0$, (in view of the nonlinear Fredholm

alternative), so even though there exists an $\eta \in [\xi_1, \xi_{m-2}]$ such that $\int_0^1 (1-\eta)e(s)ds + \int_\eta^1 (1-s)e(s)ds = \sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i)e(s)ds + \int_{\xi_i}^1 (1-s)e(s)ds] = 0$, since $\sum_{i=1}^{m-2} a_i = 1$, this η is not necessarily the same η as in (3). We are, accordingly, forced to study the m-point boundary value problem (2) directly and obtain results about the three-point boundary value problem (1) as a corollary to the results for the m-point boundary value problem. It is interesting to note that while in the nonresonance case we had to study the m-point boundary value problem, using the results for the three-point boundary value problem, using the results for the three-point boundary value problem, it is just the reverse case in the resonance case.

We obtain conditions for the existence of a solution for the boundary value problem (2), using Mawhin's version of the Leray Schauder Continuation theorem [5] or [6] or [7]. Recently, Gupta. Ntouyas and Tsamatos studied the m-point boundary value problem

$$\begin{aligned} x''(t) &= f(t, x(t), x'(t)) + e(t), \ 0 < t < 1, \\ x'(0) &= 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i), \end{aligned}$$
(4)

with $\xi_i \in (0,1)$. $0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1$, $a_i \in R$, all a_i having the same sign, given, and $\sum_{i=1}^{m-2} a_i \neq 1$, in [3]. The boundary value problem (2) differs from the boundary value problem (4) in that the associated linear boundary value problem with (2), namely,

$$\begin{aligned} x''(t) &= 0, \ 0 < t < 1, \\ x'(0) &= 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i), \end{aligned} \tag{5}$$

has x(t) = A, for $A \in R$, as non-trivial solutions, since $\sum_{i=1}^{m-2} a_i = 1$, while the corresponding linear boundary value problem associated with (4), namely,

$$x''(t) = 0, \ 0 < t < 1,
 x'(0) = 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i),$$
(6)

with $\sum_{i=1}^{m-2} a_i \neq 1$, has $x(t) \equiv 0$, as its only solution. It is for this reason we call the boundary value problem (2) to be at resonance. For some recent results on m-point and three-point boundary value problems we refer the reader to [2], [3], [4], [8], [9], [10], (and [11]).

We use the classical spaces C[0, 1], $C^{k}[0, 1]$, $L^{k}[0, 1]$, and $L^{\infty}[0, 1]$ of continuous, k-times continuously differentiable, measurable real-valued functions whose k-th power of the absolute value is Lebesgue integrable on [0, 1], or measurable functions that are essentially bounded on [0, 1]. We also use the Sobolev space $W^{2,k}(0, 1)$, k = 1, 2 defined by

$$W^{2,k}(0,1) = \{x : [0,1] \to R \mid x, x' \text{ abs. cont. on } [0,1] \text{ with } x'' \in L^k[0,1]\}$$

with its usual norm. We denote the norm in $L^{k}[0,1]$ by $|| . ||_{k}$, and the norm in $L^{\infty}[0,1]$ by $|| . ||_{\infty}$.

2 EXISTENCE THEOREMS.

Let X, Y denote Banach spaces $X = C^{1}[0,1]$ and $Y = L^{1}[0,1]$ with their usual norms. Let Y_{2} be the subspace of Y spanned by the function 1, i.e.

$$Y_2 = \{x(t) \in Y \mid x(t) = A, \text{ a.e. on } [0,1], A \in R\}$$
(7)

and let Y_1 be the subspace of Y such that $Y = Y_1 \oplus Y_2$. Let $a_i \ge 0, \xi_i \in (0,1), i = 1, 2, \dots, m-2$ with $\sum_{i=1}^{m-2} a_i = 1, 0 < \xi_1 < \xi_2 < \dots, < \xi_{m-2} < 1$, be given. We note that for $x(t) \in Y$ we can write

$$x(t) = (x(t) - A) + A,$$
 (8)

with $A = \frac{2}{\sum_{i=1}^{m-2} a_i (1-\xi_i^2)} \sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i) x(s) ds + \int_{\xi_i}^1 (1-s) x(s) ds]$, for $t \in [0,1]$. We define the canonical projection operators $P: Y \to Y_1, Q: Y \to Y_2$ by

$$P(x(t)) = x(t) - \frac{2}{\sum_{i=1}^{m-2} a_i (1-\xi_i^2)} [\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i) x(s) ds + \int_{\xi_i}^1 (1-s) x(s) ds]],$$

$$Q(x(t)) = \frac{2}{\sum_{i=1}^{m-2} a_i (1-\xi_i^2)} [\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i) x(s) ds + \int_{\xi_i}^1 (1-s) x(s) ds]],$$
(9)

for $x(t) \in Y$. We note that if Q(x(t)) = 0, there exists a $\zeta \in (0,1)$ such that $x(\zeta) = 0$. Clearly, Q = I - P, where I denotes the identity mapping on Y, and the projections P and Q are continuous. Now let $X_2 = X \cap Y_2$. Clearly X_2 is a closed subspace of X. Let X_1 be the closed subspace of X such that $X = X_1 \oplus X_2$. We note that $P(X) \subset X_1$, $Q(X) \subset X_2$ and the projections $P \mid X : X \to X_1$ and $Q \mid X : X \to X_2$ are continuous. In the following, X, Y, P, Q will refer to the Banach spaces and the projections as defined and we shall not distinguish between $P, P \mid X$ (resp. $Q, Q \mid X$) and depend on the context for the proper meaning.

Define a linear operator L: $D(L) \subset X \to Y$ by setting

$$D(L) = \{ x \in W^{2,1}(0,1) \mid x'(0) = 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i) \},$$
(10)

and for $x \in D(L)$,

$$Lx = x''. \tag{11}$$

Let, now, for $e \in Y_1$, i.e. $e \in L^1[0,1]$ with $\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i)e(s)ds + \int_{\xi_i}^1 (1-s)e(s)ds] = 0$, Ke denote the unique solution of the boundary value problem

$$\begin{aligned} x''(t) &= e(t), \ 0 < t < 1, \\ x'(0) &= 0, \ x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i), \end{aligned}$$

such that $\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i) x(s) ds + \int_{\xi_i}^1 (1-s) x(s) ds] = 0.$ Indeed, for $t \in [0,1]$,

$$(Ke)(t) = \int_0^t (t-s)e(s)ds + A,$$
 (12)

where $A = -\frac{2}{\sum_{i=1}^{m-2} a_i (1-\xi_i^2)} [\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} \int_0^t (1-\xi_i) (t-s)e(s)dsdt + \int_{\xi_i}^1 \int_0^t (1-t)(t-s)e(s)dsdt]]$. Accordingly the linear mapping $K: Y_1 \to X_1$ defined by the equation (12) is a bounded linear mapping and is such that for

$$x \in Y, KPx \in D(L)$$
, and $LKP(x) = P(x)$.

DEFINITION 1 :- A function $f:[0,1] \times R^2 \to R$ satisfies Caratheodory's conditions if (i) for each $(x,y) \in R^2$, the function $t \in [0,1] \to f(t,x,y) \in R$ is measurable on [0,1], (ii) for a.e. $t \in [0,1]$, the function $(x,y) \in R^2 \to f(t,x,y) \in R$ is continuous on R^2 , and (iii) for each r > 0, there exists $\alpha_r(t) \in L^1[0,1]$ such that $| f(t,x,y) | \leq \alpha_r(t)$ for a.e. $t \in [0,1]$ and all $(x,y) \in R^2$ with $\sqrt{x^2 + y^2} < r$.

Let $f: [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function satisfying Caratheodory's conditions. Let $N: X \to Y$ be the non-linear mapping defined by

$$(Nx)(t) = f(t, x(t), x'(t)), t \in [0,1],$$

for $x(t) \in X$.

For $e(t) \in Y_1$, i.e. $e(t) \in L^1[0,1]$ with $\sum_{i=1}^{m-2} a_i [\int_0^{\xi_i} (1-\xi_i)e(s)ds + \int_{\xi_i}^1 (1-s)e(s)ds] = 0$, the boundary value problem (2) reduces to the functional equation

$$Lx = Nx + e, \tag{13}$$

in X, with $e(t) \in Y_1$, given.

THEOREM 2:- Let $f : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function satisfying Caratheodory's conditions. Assume that there exist functions p(t), q(t), r(t) in $L^1(0,1)$ such that

$$|f(t, x_1, x_2)| \le p(t) |x_1| + q(t) |x_2| + r(t)$$
(14)

for a.e. $t \in [0,1]$ and all $(x_1, x_2) \in \mathbb{R}^2$. Also let $a_i \ge 0$, $\xi_i \in (0,1)$, $i = 1,2, \dots, m-2$ with $\sum_{i=1}^{m-2} a_i = 1, \ 0 < \xi_1 < \xi_2 < \dots < \xi_{m-2} < 1$ be given, and assume that for every $x(t) \in X$,

$$(Qx)(t).(QNx)(t) \ge 0, \text{ for } t \in [0,1].$$
 (15)

Then for $e(t) \in Y_1$, i.e. $e(t) \in L^1[0,1]$ with $\sum_{i=1}^{m-2} a_i [\int_0^{t_i} (1-\xi_i)e(s)ds + \int_{\xi_i}^{t_i} (1-s)e(s)ds] = 0$, given, the boundary value problem (2) has at least one solution in $C^1[0,1]$ provided

$$\|p\|_1 + \|q\|_1 < 1.$$
⁽¹⁶⁾

PROOF: We first note that the bounded linear mapping $K : Y_1 \to X_1$ defined by the equation (12) is such that the mapping $KPN : X \to X$ maps bounded subsets of X into relatively compact subsets of X, in view of Arzela-Ascoli Theorem. Hence $KPN : X \to X$ is a compact mapping.

We, next, note that $x \in C^{1}[0, 1]$ is a solution of the boundary value problem (2) if and only if x is a solution to the operator equation

$$Lx = Nx + e.$$

Now, to solve the operator equation Lx = Nx + e, it suffices to solve the system of equations

$$Px = KPNx + e_1,$$

$$QNx = 0,$$
(17)

 $x \in X$, $e_1 = Ke$ (note that since $e \in Y_1$, Pe = e, Qe = 0). Indeed, if $x \in X$ is a solution of (17) then $x \in D(L)$ and

$$LPx = Lx = LKPNx + Le_1 = PNx + e,$$

$$QNx = 0,$$

which gives on adding that Lx = Nx + e.

Now, (17) is clearly equivalent to the single equation

$$Px + QNx - KPNx = e_1, \tag{18}$$

which has the form of a compact perturbation of the Fredholm operator P of index zero. We can, therefore, apply the version given in ([5], Theorem 1, Corollary 1) or ([6], Theorem IV.4) or ([7]) of the Leray-Schauder Continuation theorem which ensures the existence of a solution for (18) if the set of all possible solutions of the family of equations

$$Px + (1 - \lambda)Qx + \lambda QNx - \lambda KPNx = \lambda e_1,$$
⁽¹⁹⁾

 $\lambda \in (0,1)$, is a priori bounded, independently of λ . Notice that (19) is then equivalent to the system of equations

$$Px = \lambda K P N x + \lambda e_1,$$

(1 - \lambda) Qx + \lambda Q N x = 0. (20)

Let, now, x(t) be a solution of (20) for some $\lambda \in (0, 1)$. We see on multiplying the second equation in (20) and using (15) that $(1 - \lambda)((Qx)(t))^2 \leq 0$ for every $t \in [0,1]$. Hence (Qx)(t) = 0 for every $t \in [0,1]$ and accordingly there exists a $\zeta \in (0,1)$ such that $x(\zeta) = 0$. Since, now, x'(0) = 0 it follows that $||x||_{\infty} \leq ||x'||_{\infty} \leq ||x''||_{1}$. Also since Qx = 0, we have QNx = 0. It follows that $x \in D(L)$, i.e., $x \in W^{2,1}(0,1)$ with x'(0) = 0, $x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i)$ and $x''(t) = \lambda f(t, x(t), x'(t)) + \lambda e(t)$. Accordingly, we get that

$$\begin{aligned} \|x''\|_{1} &= \lambda \|f(t, x(t), x'(t)) + e(t)\|_{1} \\ &\leq \|p\|_{1} \|x\|_{\infty} + \|q\|_{1} \|x'\|_{\infty} + \|r\|_{1} + \|e\|_{1} \\ &\leq (\|p\|_{1} + \|q\|_{1}) \|x''\|_{1} + \|r\|_{1} + \|e\|_{1} \end{aligned}$$

It follows from the assumption (16) that there is a constant c, independent of $\lambda \in (0,1)$ and x(t), such that

$$\|x''\|_1 \leq c.$$

It is now immediate from $|| x ||_{\infty} \le || x' ||_{\infty} \le || x'' ||_1$ that the set of solutions of the family of equations (20) is, a priori, bounded in $C^1[0,1]$ by a constant, independent of $\lambda \in (0,1)$.

This completes the proof of the theorem.//

REMARK 1:- We remark that the Theorem 2 remains valid if we replace (15) by the condition

$$(Qx)(t).(QNx)(t) \le 0$$
, for $t \in [0,1]$. (21)

for every $x \in X$.

REMARK 2:- We remark that the condition (15) can be replaced by the condition

$$f(t, x_1, x_2) x_1 \ge 0, \tag{22}$$

for almost all $t \in (0,1)$ and all $(x_1, x_2) \in \mathbb{R}^2$. Indeed, condition (15) was used to show, in the proof of Theorem 2, that if x(t) is a solution of (20) for some $\lambda \in (0,1)$ then there exists a $\zeta \in (0,1)$ such that $x(\zeta) = 0$. We, now, show that (22), implies that if x(t) is a solution of (20) for some $\lambda \in (0,1)$ then there exists a $\zeta \in (0,1)$ such that $x(\zeta) = 0$. Indeed, suppose that $x(t) \neq 0$, for all $t \in (0,1)$. We may, infact, assume without any loss of generality that x(t) > 0, for every $t \in (0,1)$. It then follows from (22) that $f(t,x(t),x'(t)) \ge 0$, for a.e. $t \in (0,1)$. Hence Qx > 0 and $QNx \ge 0$. Now the second equation in (20) gives that $(1 - \lambda)(Qx)^2 + \lambda(QNx)(Qx) = 0$, so that we get $(Qx)^2 \le 0$, a contradiction. Accordingly, there must exist a $\zeta \in (0,1)$ such that $x(\zeta) = 0$.

THEOREM 3 :- Let $f : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function as in Theorem 2. Assume that the functions p(t), q(t), r(t) in (14) are in $L^2(0,1)$. Let $a_i \ge 0, \xi_i \in (0,1), i = 1,2, \dots, m-2$ with $\sum_{i=1}^{m-2} a_i = 1, 0 < \xi_1 < \xi_2 < \dots < \xi_{m-2} < 1$ be given.

Then for $e(t) \in L^2[0,1]$ with $\sum_{i=1}^{m-2} a_i \int_{\xi_i}^1 e(s)ds = 0$, given, the boundary value problem (2) has at least one solution in $C^1[0,1]$ provided

$$\frac{2}{\pi} \left(\frac{2}{\pi} \|p\|_2 + \|q\|_2\right) < 1.$$
(23)

PROOF:- The proof is similar to the proof of Theorem 2, except now one uses the inequalities $||x||_2 \leq \frac{2}{\pi} ||x'||_2 \leq \frac{4}{\pi^2} ||x''||_2$ for an $x \in W^{2/2}(0,1)$ with $x(\zeta) = 0$, for some $\zeta \in (0,1)$ and x'(0) = 0 (see, Theorem 256 of [12]) to show that the set of solutions of the family of equations (19) is a priori bounded in $C^1[0,1]$ by a constant independent of $\lambda \in (0,1).//$

THEOREM 4 :- Let $f:[0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function as in Theorem 2 (respectively, Theorem 3). Let $\eta \in (0,1)$ be given. Then for $e(t) \in L^1[0,1]$ (resectively. $e(t) \in L^2[0,1]$) with $\int_0^{\eta} (1-\eta)e(s)ds + \int_{\eta}^{1} (1-s)e(s)ds = 0$, given, the three-point boundary value problem (1) has at least one solution in $C^1[0,1]$ provided

$$\|p\|_{1} + \|q\|_{1} < 1, \tag{24}$$

(respectively, $\frac{2}{\pi}(\frac{2}{\pi}||p||_2 + ||q||_2) < 1$).

PROOF:- The theorem follows immediately from Theorem 2 (respectively, Theorem 3) with m = 3 and $a_1 = 1$, $\xi_1 = \eta$.//

THEOREM 5 :- Let $f:[0,1] \times \mathbb{R}^2 \to \mathbb{R}$ be a function as in Theorem 2 (respectively, Theorem 3). Then for $e(t) \in L^1[0,1]$ (resectively, $e(t) \in L^2[0,1]$) with $\int_0^1 (1-s)e(s)ds = 0$, given, the boundary value problem

$$\begin{aligned} x''(t) &= f(t, x(t), x'(t)) + e(t), \ 0 < t < 1, \\ x'(0) &= 0, \ x(0) = x(1), \end{aligned}$$

has at least one solution in $C^{1}[0,1]$ provided

$$\|p\|_1 + \|q\|_1 < 1, \tag{25}$$

(respectively, $\frac{2}{\pi}(\frac{2}{\pi}||p||_2 + ||q||_2) < 1$).

PROOF:- The theorem follows immediately from Theorem 2 (respectively, Theorem 3) with m = 2 and $a_1 = 1$, $\xi_1 = 0.//$

References

- V. A. Il'in, and E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations. Vol. 23, No.27, (1988) pp. 803-810.
- [2] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos, On an m-point boundary value problem for second order ordinary differential equations. International Journal of Nonlinear Analysis, TMAA (to appear).

- [3] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos, Solvability of an m-point boundary ralue problem for second order ordinary differential equations. Jour. Math. Anal. Appl., (to appear)
- [4] C. P. Gupta, S. K. Ntoiuyas, and P. Ch. Tsamatos, Existence results for m-point boundary value problems. Journal of Differential equations and Dynamical Systems (to appear)
- [5] J. Mawhin, Landesman-Lazer type problems for nonlinear equations, Conference Sem. Mat. Univ. Bari, 147 (1977)
- [6] J. Mawhin, Topological Degree methods in Nonlinear Boundary Value Problems, in "NSF-CBMS Regional Conference Series in Math." No. 40, Amer. Math. Soc., Providence, RI, 1979
- [7] J. Mawhin, Compacité, Monotonie et Convexité dans l'etude de Problèmes aux Limite Semilinéaires, Sem. Anal. Moderne 19 (1981)
- [8] C. P. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, Jour. Math. Anal. Appl., Vol. 168 (1992), pp. 540-551
- [9] C. P. Gupta, A note on a second order three-point boundary value problem, Jour. Math. Anal. Appl., (to appear).
- [10] C. P. Gupta, Solvability of a multi-point boundary value problem at resonance. Results in Mathematics (to appear)
- [11] S. A. Marano, A remark on a second order three-point boundary value problem, Jour. Math. Anal. Appl., (to appear)
- [12] G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities*, Cambridge University Press, London/New York, 1967.