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ABSTRACT.The fractional integrals I+(x)0 of variable order e(x) are

considered. A theorem on mapping properties of Ia+(x) in Holder-type spaces

Hx(x) is proved, this being a generalization of the well known

Hardy-Li ttlewood theorem.
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I. NTROOUCTION

In the paper [I] the authors introduced and investigated the fractional

integrals

l(X)0 )(x)-’F[(x)] e(t)(x-t dt (1)

of variable order e(x)>O and considered the corresponding versions of

fractional differentiation as well.

In this paper we prove the theorem on the behaviour of the operator

l(X) in the generalized Holder spaces H)’(*) the order of which also
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depends on the point x This is a generalization of the Hardy Littlewood

theorem, well known in the case of constant orders e(x)==const and

x(x)=X=const (Hardy and Littlewood [2]; see also Samko et al [3], p. 53-54).

Our interest in integration and differentiation of a variable order is

motivated not only by the desire to generalize the classical notion, but by

some far reaching goals as well. There is the well known theory of fractional

Sobolev type spaces see its elements e.g. in [3], sections 26-27. These

spaces consist of functions whose smoothness property can be expressed either

globally or locally in terms of the existence of fractional derivatives. The

smoothness property of a function may, however, vary from point to point. The

construction of the corresponding Sobolev type spaces is an open question. The

notion introduced in (1) is the appropriate tool for this purpose. In this

paper we deal only with the question of improving the smoothness property,

expressed in terms of the Holder type condition, by the operator (1), and the

theorem proved may be considered as a starting point for further

investigations of functions with varying order of smoothness. In Section we

give all required definitions and some auxilliary lemmas, while Section 2

contains the statement and the proof of the main result.

In what follows the letter c may denote different positive constants.

2. PRELIMINARIES

Let Q [a,b] . < a < b < 0. The following is a generalization of

the Holder space H
)"

0 < ),

DEFINITION I. We say that f(x) E H)’(x) (Q) where X(x) is a positive

(not necessarily continuous) function, 0 < X(x) < I, if

If(x+h)-f(x)l cihl
x() (2)

for all x x+h E [a,b]

It is easily seen that (2) implies that

f(x+h)-f(x)lclhl x(x+h)

So, it is not difficult to show that the definition of the class H)’()(C)) by

(2) is equivalent to the definition by means of the following symmetrical
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nequal ty

If(x )-f(x )! clx-x ImaX{X(Xl)’X(x2 ))

2 2
(3)

It is easily seen that HX()(O) is a ring with respect to the usual

multiplication. It is a Banach space with respect to the norm

f(x+h)-f(x)lsup supIlfllHx (x)
xeO h< Ihl

x(x)

h+ xEf

f(x )-f(x )1
2sup

E IX --X Imax((xl ’(x2)
Xl’ 2 2

(4)

where denotes the equivalence- f g <= c f<g;czf, c >0, c >0.
2

Generalizing Definition we give the following

DEFINITION 2. We say that f(x) E Hx(x)’W(*)(O) where ),(x)

are given functions, 0 < x(x) < 1, , < p(x) < if

and (x)

i__11/(x)If(x+h)-f(x)l clhl
)’(x) In Ihl <-2-

under assumption that x, x+h E O

We shal need the fol lowing auxi 11 iary assertions.

LEMMA I. Let the function X(x) E C(O) satisfy the condition

for all

IX(x+h)-X(x)l < A A const > 0
l+ln

h

x x+h E 0 Then the function

(5)

g
s,t

(x) (x-a) (6)

where x,t,t+s(x-a) E O s E [0,1] is bounded from zero and infinity-

0 < d-^ s g (x) _< d^ < , (7)

with a constant d max{e,b-a,I/(b-a)} not depending on s,t and x
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PROOF. Since

In g (x) {).[t+s(x-a)] )‘(t)} In(x-a), by (5) we have

Iln g (x)l <
Alln(x-a)l Alln(x-a)l

b-a b:as, 1+1n s(xa 1+1n x---E

simple calculations show that the maximum of the right-hand side is A

max{1,11n(b-a)l} Really, let f(y) A lyl(l+c-y) -, where- , y s c

ln(b-a). Suppose b-a z first. For y>O we have f(y) Ay(l+c-y)-l Ay <

Aln(b-a). If y<0, then f(y) Alyl(l+c+lyl) - < A Therefore,

f(y) A max 1, ln(b-a)

in the case c In(b-a) > 0 Let now c < 0 Then y < 0 and f(y) A

A(l+c)(l+c-y) -1 if 1+c z 0 If 1+c < 0 we have f (y) A(l+c)(l+c-y) -2

> 0, so that f(y) < f(c) for y _< c which gives f(y) < Alcl= A I]n(b-a)l. So,

f(y) A max 1, Iln(b-a)l

in all cases. Therefore,’ln g(x)l A max{1,11n(b-a)l} ,whence (6) follows.

LEMNA 2. For any function (x) such that 0 < (x) the inequality

+h)
cxcx) xCX() hcx(x) h>O, x>O (8)

holds.

PROOF. By dividing a]] members in (8) by ha(x) we see that the

inequality (8) is equivalent to the inequality f(C) with f(()

(l+c)(x)_ ((x)> 0 for a]] C > 0 which is evident because f (() < 0 and

f(O)

LEMNA 3. Let 0 < < and ( < X < Then

sin B(, 1+),)[ tX[tx--(t+l)(z-] dt
sin (4:k)

O

(9)
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PR(X)F. Let A(.,) denote the left-hand side in (9) After the

substitution t+l S-1 we have

)), (1-s)a- -1
o s

ds (10)

Hence

)X (1-s)" l+(l_s)p
A(,,=) [ (1-s

1++0
0

)X (1-s)/-1
dsds + (1-s

0 S

with / not determined as yet. Hence, by (10)

A(;k =) A()+/,=-/) + f (l-s)X
(1-s)P-1

ds
o s

The second integral here is evaluated by means of analytical continuation with

respect to

[ (l-s)x (1-s)P-1
ds B(X++I -X-a) B(X+I

SI+X+(0

under the appropriate conditions on the parameters M and X So,

[F(x++l F(X+I I]A(),,) A(),+/,-p) + r(-),-() LF(+l_a)

Simple calculations show that A(0,a) 1/a So, choosing /=-), we have

A(X,) :X+I + F(-X-) F( 1-

which gives (9) after easy calculations.

3. THE HAIN THEOREN

Considering the fractional integral Ia(X)0 defined in (1), of the

function 0(x) H)’(x) we shall assume the following conditions on (x)

and x(x) to be satisfied-
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i) 0 < (x) with m inf (x) > 0
XEO

and (x) H/(x)(o) 0 < 6 < p(x) <

ii) 0 < X(x) < and X(x) satisfies the condition (5)-

iii) (x) + (x) <

THEOREM. Let the conditions i) iii) be satisfied and let (x)
_

HX(x)(O) Then I()0 has the form

I()0 F[I
(a)
/(((x)] (x-a + f(x) (11)

where

f(x) E H(X)(o) (x) min{),(x)+({(x), p(x)} (12)

if max[X(x)+(x)] < and
xEO

f(x) E HY(x)’(O) (13)

if max[X(x)+(x)] In both cases

If(x)l < c(x-a)x(’()+(’() < c(x-a)x()*() (14)

REMARK. The assertion (13) can be exactified:

c 7(x)If(x+h)-f(x)l 1-(x)-(x) Ihl (15)

for all x e 0 such that (x) + X(x) < and

If(x+h)-f(x)l clhl 7(x) In Ihl < (16)
IIII

for those x which give the equality (x) + x(x) c being a positive

constant not depending on x and h (see the proof of the theorem).

PROOF OF THE THEOREM. From the conditions i) and ii) it follows that

E HP(x)(Q) Really, 17(x+h)-7(x)l < l(x+h) (x)l(x) I[o(x)]
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ax (lI"’(x)/F(x)l) c Ihl pc) So, it is sufficient to consider the

integral

)((x -1
g(x) (x-t 0(t)dt

we have to prove that

g(x) (a) (x)

(X)’ (x-a)( + fo(x) (17)

where

f (x) c H)’cx)+cx) or f (x) c Hxcx)+cx)’1 (18)
0 0

if max[X(x)+(x)]<l or max[),(x)+(x)]=l respectively (with the

exactification (15)-(16), if we will). The derivation itself of the equali.ty

(17) with the function

f (x) [ _(t)-(a)_ dt
o (x-t) 1-cx)

is obvious. For the function f (x) we prove first the estimate (14). We have
o

)e(x)-If (x)l I111 x()[ (x-t (t-a) dt
0

H

C(x_a)e(x),X(a [1(l_S)e(x)_isX[a,s(x_a)} g
o

(x) ds

where g (x)- is the function (6). By lemma we have
s,a

If (x)l < c (x-a)cx)+Xca) [ )m-(1-s ds c (x-a)(x)+)’ca)
2o o

Hence, to obtain the estimate (14), it remains to observe that

(x_a)(x)*x(a) <c(x-a)(x)*X(X)c (x-a)(a)*x()c (x_a)(*)/()
2

which follows from the lemma (we remark that the condition (5) for



784 B. ROSS AND S. SAMKO

X(x)+(x) is fulfilled because it is satisfied for x(x) by the assumption

in ii) and for (x) by the assumption in i) ).Thus, (14) is proved.

To prove the statements (18) we consider the difference f (x+h) f (x)
0 0

taking h positive. (If h < O, by denoting x+h x x x +(-h) we reduce

the consideration to the case of positive increment). We represent this

difference as

o(x-t)dt

i 0 (x-t)tit

f(x+h) f(x) I (t+h)-(x(x+h) t-(x)
-h 0

Co(X-t) (t+h)(*+h)- (t+h)(*)-m dt
-h

-h
(t+h)a-c) t-cCx) o

0

(19)

with Po(t)_ e(t) e(a) We estimate J first. We have
0

JJo max Jeo(t)l I I(t+h)(x*h)-- (t+h)(x)-l dt

-h

x+h-a

(x+h)-I t(x)- dt

Since tu-t tlnt (u-v) with between u and v we obtain

x+h-a

IJ!-o cl(x+h)-(x)l

0

tF’-lln tl dt

with ( between (x+h) and e(x) so that z m > 0 Since t(-ls Atm-I

with A max{1,(b-a) -m}, we have
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2(b-a)

IJol cAh/(x) I
o

tm-lln tl dt c h/(*) (20)

As regards the term J in (19) it should be decomposed similarly to the

proof of the Hardy Littlewood theorem for the case (x) const X(x)

x const see Samko et al [3]. We have

J=J +J +J
2. 3

wi th

xia+h [ go(X-t)-o(X)
Oo(X) (t+h)(x)- dt J dt

2 (t+h)-(x)
-h

J3 I [(t+h)(x)-I t(x)-l] [o(X-t) 0o(X)] dt

o

The estimate of J In the case h x-a for the term

o(X)
J (x) (x_a+h)

c(x) (x-a)(xcx)]

we use the inequal ty

(x_a)x(x)IOo(X)l < IIOllHX(X (21)

and the inequality (1+t)/-1 < t with 0</1 and t > 0 We have

IJ c
(’x-a’X()+((x)

(x)

C(x)

(22)

c(x_a)X(x)+C(x) h c(x-a)x()+c()- h c h-a
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If x-a h we use (21) again and have

IJl c (x)
(x+h-a)(x) (x-a)(x)

Hence, by (8)

IJ I<
c X(X)h(X) c hX(X)+(x)-- (x-a) < --m

The estimate of J The estimate of
2

of constant order:

J is completely like in the case
2

o X(x)

Id c I Itl dt
2 (t+h)-(x)

-h

C h
X(x)+(x) (23)

The estimate of J We have
3

IJ 13 <c I tX(x)l(t+h)(x)-I- t(x)’l dt

o

C h
X(X)/(X)

o

tX(x) [t(x)-I (t+l)(x)-l] dt (24)

If x-a < h we have

j31 c hX(X)*"x) I tX(x) [te(x)-I + (t+l)(x)-l] dt

o

< c h
x(x)+(x) I (tm-1+1)dt c h

o

Let x-a z h Then
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IJ sc hX(X)*=(x) [tX(x) [t=(x)-l (t+l)=(x)-l]dr3
o

under the assumption that X(x) + (x) < Then by the 1emma 3 we have

IJ < c hx(X)/e(x) sin[(x)]
3 sin[e(x)+X(x)]

because B(=(x),l+x(x)) const. Since 1/(sint) c(1-t) "1, we have

c hx(X)+(X)

IJI
3

(25)

If X(x)+=(x) we split the integration in (24) fro 0 to and fro to

(x-a)/h and havehave fro (24)

IJ c h + h t -1 dt
3 2

since Itx)-I (t+l)(x)-ll c t(x)-Z for t > So,

J31 s c h [1 + in _] < c h in (26)

because x-a h

Gathering the estimates (20), (22), (23), (24), (25) and (26) we obtain

the inequalities (15) (16) which proves the theorem.
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