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ABSTRACT In th=s paper we define the space Co(A)={x=(xk)/Xk-kk. 0 (k oo), x o=0, XkEE; and compute

=is duals. (Cont=nuous dual, I-dual and N-dual) The am of th=s paper is to gve same results about mat.x mappmg

of Co(^) into other sequence spaces Includmg the convergent sequences, null sequences and bounded

sequences
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1. Introduction

Let Io, c and co be the linear spaces of complex bounded, convergent and null sequences x=(xk)
respectively, normed by

Ilxlloo suPk IXkl
where kEIN {1,2 }the positive integers. On the other hand we delined

Io(&)={x=(xk)/&xElo}, c(&)={x=(xk)/&xEc and Co(&)={x=(xk)/&xECo} where &x=(xk-Xk.1), Xo=0 [2].

(Throughout this paper it is assumed that Xo=0)
Co(A), c(&) and I=(&) are Banach Spaces with the norm

Ilxll& suPk IXk-Xk.ll [2].

co, c, Io and Mo=lo ClCo(&) are Banach with the norm I1.11 b, ,,,,y ,,,,’, Banach with the norm I1-11,
n

If we say sx=( klXk= then we have ms {x=(xk)/SxEl=}, Cs={X=(Xk)/SXEC and (Co)s={X=(Xk)/sXECo}

[4]. I=, c and co are isometrically isomorphic to ms, cs and (Co)s, respectively with their natural norms.

For instance f" I= ms, f(x)=&x and f-1. ms
f’l(x)=sx are isometric isomorphisms. Simila I(), c() and Co(&) are isometrically isomorphic to I,
c and co respectively. Obviously

,: (Co(^), II.II,) (co, II.II=), ,(x)x
and

r.(,=o, II.II=) %(,), II.II, ), ,(:,()= x

are isometric isomorphisms. (1.1)

We have investigated matrix maps and related questions connected with Ioo(4 and c(&) in [2]. We

know that c
O

and c have Schauder basis but Io has no basis with the norm I1.11 Write e k

=(0,0 0,’’,0 ). Then (ek) is a basis for co and (ek.1)(eo=(1,1,1 )) is a basis for c, with I1.11 and

I1.11,. On h,, ohr hand (Ek)=(0,0,...,’"--"O,1,1,1 )) is a basis for Mo and Co(& with the norm I1. so

Co(&) is a separable Banach Space.

We know that the conhnuous dual of co and c is Ii={x=(xk)/k’.lIkl<x,,= XkEt [3] (Page 110) (

the set of complex numbers) Thus 11, is continuous dual el Co(A) by (1 1) Moreover, we can prove

that
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’=Mo= Co(A)

w,h h,, norm I1-1!,,,. wh,,,e h,, bar denotes closure. For this, let xECo(&) and ::>o be any number Then

k
there exisls one and only one y=(yk)(ECo such that Xk= ly (1.1) and a corresponding index

i=

M=M()(E IN such that ly kl</2 for all kzM. Now we lake

Xk’

Zk--

XM. k>M

thus z=(zk)E;cC Co(& belongs to the open ball B(x.:) which s in (Co(&), II.I1,)
2. I-dual, N-dual and Matrix Maps

If X is a sequence space, we define

X={a=(ak)l klakXk= is Convergent for each xEX}

xN={a=(ak)/lin akXk=0, for each X}. X is called the ll-(or generalized KSthe-Toplitz) dual [1] and

we will say that XN is N-(or null) dual space of X. We have that if XCY. then YICXI. The N-dual has
similar propedies with the -dual. For inslance if XCY than yNcxN and XXN

N ,IN- N cN=c’Obviously Co =- Mo
cNI&) Ioo(&) {a=(ak)/lkakCo}. Let (X,Y) denote the set of all infinite matrices A=(ank which map X
into Y.

LEMMA 1. Let (ak)(EI and if limklakXkl=L exists for an xECo(A), than L=0.

Proof. It is lrivial if x=(xk) is bounded. Suppose that xE.:Co(& is unbounded and limklakXkl=L>0.
Then x can’t have a bounded subbequence. II (Xkn) is bounded then limnlaknXknl=0 implies L=0. So

we can take X’k,0 for all rEIN.

Now let =-), than there exists an MI=MI()E IN such lhal - <lakXkl< for all kzM 1. Thus we

L 1. for all k-zM andget lakl > -iXkl
<oo (2.1)kl= IXkl

xk Ix kWe have that -,, 0 (k oo) [2]. Let 1, then we have -- <1 and>- lor all k>M2(1)IN. If we

Xkl
take max {M ,M2}=M then k

__
z =oo. This contradicts with (2.1). So L must be zero.

=1 IXkl k IXkl

LEMMA 2. coN(A)={a=(ak)/(kak)Eloo}=E.
x kProof. Suppose that a=(ak)E E. Since lim k --=0 for all x=(xk)ECo(A [2], Ihen we get

xk
limkakXk=limkkak --=0. This implies that aE;coN(&).

Now let a@coN(&). Then limkakXk=0 for all xE;Co(& ), then lhere exists one and only one y=(yk),:co,
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n
such that xn- k’,k(1_ 1)

n

limnanXn hmn k=lanYk=O for all y=(yk)C if we take
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an lsksn

ank=j O, k>n

get limn klankYk=O,= for all XCo. Then A=(ank C(Co,Co) and we have

Supn kllankI= supn kllanI= Supn nlanl < [4] Ths completes the proof

For the next results we ntroduce the sequence (Rk) [resp malnx R] gven by Rk= i--’a [resp malnx

R=(Rnk)= i-- ani )]"

LEMMA 3. Co(A‘)={a=(ak)CI1/(Rk)El (3 coN(A)}=D
Proof. Suppose that aED If XCo(A‘ then we use Abel’s summation formula to get

n n k n

k__lakXk kl(ilal) (Xk-Xk+ 1) + (k__lak) Xn+

n

kl(Rl= Rk+l) (Xk Xk+l) + (R1 Rn+l) Xn+l

n+l

Rk(Xk’Xk-1)-Rn+l Xn+lk=l
(2 2)

This implies that __klakXk is convergent, lhen a@cPo(A‘).

If aco(A‘ then akxk is convergent for all XCo(A‘ Obviously al If XCo(A‘ ), then there
k=l

exists y=(yk)ECo such that xk i=lYi (1"

Then

n n k n

klRkyk= =kl(= i=1 yi) ak+ Rn+I klyk with Abel summation formula Thus we have

If we take

n n n n
2 akXk=kl(Rk’Rn+l)Yk =k= (i-- ai)ykk-1

(2.3)

n
a 1(: k(: n

ank
0 k>n

n
then A=(ank) (Co,C) since limn k=lank Yk limn lank= Yk exists for all co (2 3). This implies that
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n n

SuPn lank =SuPn li=,ail < [4]. Thus we get IRkl < oo. Furthermore (2.2) implies that lirank= k= k=l

Rn+l xn+l exists for each XECo(&) then we get (R n)ECoN(A) by lemma 1. This completes the prool.

THEOREM 1. A=(ank) E(Co(A),c iff

T (Rnk)EcNo(A), for each nEIN

T2. R= (Rnk) EE(Co,C

Proof. If aE(Co(A),c then the series An(X klankxk= are convergent for each nEIN and for all

XECo(A this implies that SuPn
k=l

lankl <= and limn kank= ap exists for each pEIN [3] (page

166). From lemma 3 we have k1= IRnkl<=, limk Rnk Xk=0 for each nlN and for all xElCo(A). This

proves T1. If we write again (2.2) we get

and

m m+l

kY’lank= Xk klRnk= (Xk’Xk-1)’Rn m+ Xm+ (2.4)

An (x)= klank xk klRnk (xk Xk.1 (2.5)

This shows that RE(Co,C). If we use again lemma 3 and (2.5) we get the sufficiency o! T and T2.
Similarly we can prove that

i) AEE(Co(A),Co) iff T and REE(c o,Co)
ii) AEE(Co(A), I=) iff T and

iii) AEE(Co(A), Mo) iff T RE(I=, I=) and

B=(bnk)=(ank an k+l E(Co(A),co)
iv) AE(Co(A), Co(A))iff (ank) EClo(A), for each nlN and C=(Cnk)=(ank-an.l.k)E(Co(&),Co) (aok=O)

Open questions

1) Matrix maps for Mo.

2) Mo has a Schauder basis with I1.11. ,, s <Ek). <w, can write x= kl(Xk-= Xk.1) Ek, each xEMo

Then (Mo, I1.11 ) s separable.

Is M
O
separable or have a Schauder basis with I1.11(R)

3) I! is obvious that co C c C Mo C I= and inclusions are strict. In this order, is lhere a separable

space E which is cC EC I= with the norm I1.11(R) , not, is c an upper bound according to separability?
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