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ABSTRACT. We study some conditions on the Ricci tensor of real hypersurfaces of quaternionic

projective space obtaining among other results an improvement ofthe main theorem in [9].
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1. INTRODUCTION.
Let M be a real hypersurface, which in the following we shall always consider connected, of a

quaternionic projective space QP’, rn >_ 2, with metric g of constant quaternionic sectional curvature 4.

Let ( be the unit normal vector field on M and {J1, J2, J3 } a local basis of the quaternionic structure of

QP’, see [2]. Then U, d,(, 1, 2, 3, are tangent to M. Let S be the Ricci tensor ofM.
In [6] we studied pseudo-Einstein real hypersurfaces of Qpm. These are real hypersurfaces

satisfying
qX aX + bL,=IB(.X U,)U, (1.1)

for any X tangent to M, where a and b are constant. Ifm _> 3 we obtained that M is pseudo-Einstein if

it is an open subset of either a geodesic hypersphere or of a tube of radius r over Qpk,
0 < k < rn 1, 0 < r < n/2 and co2r (4k + 2)/(4m 4k 2).

As a corollary we also obtained that the unique Einstein real hypersurfaces of Qp,n, rn >_ 2, are

open subsets ofgeodesic hyperspheres ofQP’ ofradius r such that co9r 1/2m.
The purpose of the present paper is to study several conditions on the Ricci tensor of M.

Concretely in 3 we prove the following result if X is tangent to M we shall write

J,X==X+fi(X),i= 1,2,3, where ,I,,X denotes the tangent component of J/X and

f,(X) g(X, U,). Then

THEOREM 1. Let M be a real hypersurface of QP’, m _> 3, such that b,S SI,,, 1, 2, 3.

Then M is an open subset of a tube of radius r, 0 < r < YI/2, over QPk, k E {0, , m 1}.
This theorem generalizes results obtained by Pak in [7].

In [9] we studied real hypersurfaces of Qpm with harmonic curvature for which U,, 1, 2, 3, are

eigenvectors of the Weingarten endomorphism of M with the same principal curvature. A real

hypersurface has harmonic curvature if

V xS)Y V yS)X (1.2)
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for any X, Y tangent to M, where , denotes the covariant differentiation ofM In 4 we shall improve
the result of [9] showing that the condition about principality of U,,i 1,2,3, is unnecessary
Concretely we obtain

THEOREM 2. A real hypersurface of QP’, m _> 2, has harmonic curvature it" and only if it is

Einstein

As a consequence we can classify Ricci-parallel real hypersurfaces of Qpm, that is, real

hypersurfaces such that q7 xS 0 for any X tangent to M. We get

COROLLARY 3. The unique Ricci-parallel real hypersurfaces of Qpm, m _> 2, are open subsets
of geodesic hyperspheres of radius r, 0 < r < 7r/2, such that corer 1/2m.

From this result we introduce in 5 a condition that generalize Ricci-parallel real hypersurfaces We
shall say that a real hypersurface ofQpm is pseudo Ricci-parallel if it satisfies

V xg)Y c =I{#(,X,Y)U, + f(Y),X} (1.3)

for any X, Y tangent to M, c being a nonnull constant We obtain

THEOREM 4. M is a pseudo Ricci-parallel real hypersurface of Qpm, m _> 2, if and only if it is

"an open subset of a geodetic hypersphere.
Finally, we characterize pseudo-Einstein real hypersurfaces ofQpm by the following
THEOREM 5. Let M be a real hypersurface ofQpm, m _> 3, then

s >_ _,(L(su,)) + if- _,L(su,)))/4(- ) (1.4)

where p denotes the scalar curvature ofM. The equality holds if and only ifM is pseudo-Einstein.
2. PRELIMINARIES.

Let us call D+/- Span{U1, U2, U3} and D its orthogonal complement in TM. Let X, Y be vector

fields tangent to M. Then, [6], we have

x x + L(x)u (2.1)

g(,,X, Y) + g(X, (,Y) O, ,,U, O, ,U, ,U Ut (2.2)

where 1, 2, 3 and (j, k, t) is a circular permutation of (1,2,3).
From the expression ofthe curvature tensor ofQpm, [2], the Ricci tensor ofM is given by

SX (4m + 7)X- 3’=lf(X)U + hAX A2X (2.3)

for any X tangent to M, where h trace(A). Moreover, [6],

V xU, qk(X)U %(X)Uk +AX (2.4)

for any X tangent to M, (i, j, k) being a circular permutation of (1, 2, 3) and q,, 1, 2, 3, certain local
1-forms on M (see [2]). Finally the equation ofCodazzi is given by

V xA)Y- V yA)X =l{f(X),Y f,(Y)O,X + 2g(X,O,Y)U,} (2.5)

for any X, Y tangent to M
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3. PROOF OF THEOREM 1.

Let us call H A" fA, f being a differentiable lhnction on M
If we suppose that H’/h b,H,i 1,2,3, from (2 2) HU 0 bHUz This implies

0 bHU HU + f (HUI)UI. That is, U is an eigenvector of H Similarly, U._, and U..{ are

also eigenvectors of H Let us consider TM H(a) (g Ha,.) (9 (g H(cp), where

H(cb) {X E TM/HX o,jX}. Suppose that U, H(c,),i 1,2,3.

If X ( D is such that X H(c,),H(bX bHX abX, that is, (I)jX 6 H(o,), 3 1,2,3.

Moreover HbUz bHU1 a’/)U,3 1,2,3. If.7 2, we obtain that HU3 aU3. Ifj 3 we

obtain HU aUo.. Thus a c. 3. Then H(a) is odd-dimensional and from (2 5) the proof of

Theorem 6 in [6] implies that U, 1, 2, 3, are eigenvectors ofA
If we now consider a real hypersurface of QP’, rrz _> 3, such that ,I%S S(I,,, 1, 2, 3, from

(2 3) we obtain that ,,,H H(I,, 1,2, 3, for f h. Thus U, 1, 2, 3, are eigenvectors of A.
Thus, [1], M is an open subset of either a tube of radius r, 0<r<17/2, over

QP, k 6 {0, , m 1 } or of a tube of radius r, 0 < r < FI/4, over C
Let us consider the second case The eigenvalues of A are cot(r) with multiplicity 2(m- 1),

-tan(r) with multiplicity 2(m-1), 2cot(2r) with multiplicity 1 and -2tan(2r) with multiplicity
2 Let X be a unit vector field such that AX cot(r)X Then ,SX (4m + 7 + hcot(r)
-cot’(r))b2X and Sb2X: (4m+7-htan(r)-tan2(r))cb2X From this we have h(cot(r)
+ tan(r)) + tang(r) cot’(r) 0. Thus either cot(r) + tan(r) 0 and this implies cot2(r)
which is impossible or h + tan(r) cot(r) 0. As h 2(m 1)(cot(r) tan(r)) + 2cot(2r)

4tan(2r) it is easy to see that tan" (2r) m 1.

On the other hand, bSU (4m + 4 + 2hcot(2r) 4cot (2r))U3 and S2U SU3 4m

+ 4 2htan(2r) 4tan (2r))Uz. This implies h(cot(2r) + tan(2r)) 2(cot (2r) tan (2r)) 0.

Thus either cot(2r) + tan(2r)= 0 which implies cot2(2r):- 1 which is impossible or

h 2(cot(2r) tan(2r)) 0. This implies tan2(2r) 2(m 1). Thus m 2(m 1). Then

m 1 which is impossible. This finishes the proof

4. PROOF OF THEOREM 2.

As M has harmonic curvature for any X, Y tangent to M we get

V xSY 27 rSX S([X, Y]) (4.1)

Then for any X, Y, Z tangent to M we obtain

R(Z, X)SY , z V xSY- x 7 zSY r7 [z,xlSY

S(R(Z,X)Y) + V z( rS)X + V zS)( V xY)

<7 X( V yS)Z 7 xS)( V zY) V [z.x]S)Y (4.2)

where R denotes the curvature tensor of M.
From (4.2), (1.2) and the first identity ofBianchi we get

g(R(X, Y)SZ) 0 (4.3)

for any X, Y, Z tangent to M, where cr denotes the cyclic sum. The result now/bllows from the main

theorem of [8].
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PROOFS OF THEOREMS 4 AND 5.

Firstly, let us suppose that M is pseudo Ricci-parallel Then applying (1 3) and (2 4) we have

7 w( x7 xS) )Y- 7 7.xS)Y cE_ ]{g(,X,Y),AW + g(Y, av,AW),,X +

+ f(X)g(AW, YIU, 2f,(Y)g(AX, W)U, + f(Y)f,(X)AW} (51)

for any X, Y, W tangent to M If in (51) we exchange X and W we get

(R(W,X)S)Y c__I{f(X)g(AW, Y)U, f(W)g(AX, Y)U, + g(,X,Y),,AW (5 2)

g(,W,Y),AX + g(,,AW, Y),X- g(AX, Y),W + f(Y)f(X)AW f,(Y)f,(W)AX}

Taking a local orthonormal frame {El, , E4m-1} ofTM, from (52), (21) and (22) we have

EJ=ml g((R(E3, X)S)Y, e.) c_ {f,(X)L(AY g(,X, Y)trace(A,,) 2f,(Y)f,(AX)

g(A,Y, ,,X)+ hf(Y)f,(X)} (53)

Now the left hand side of(53) is symmetric with respect to X, Y (see [4]) Thus (53) gives

3cE,=, f,(X):f,(AY) 3C_l:f,(Y)f(AX (54)

But trace(Ae,) is easily seen to be 0 and bearing in mind that c is nonzero, (5.4) can be written as

__lf,(X)f,(AY) =f,(Y)f,(AX)

for any X, Y tangent to M.
We know, [1], that if g(A]D,]D+/-) {0},U,, 1,2,3 are principal for A. Let us suppose that

(A]D, D+/-) # {0} We shall distinguish the following cases where Xa denotes the ]D-component of X.

(i) (AU2)D (AU3) 0 and (AU)a # O. Then we write AU1 aX + flY1 where

X1 ]D and YI]D+/- are unit. If we take in (5.5) X=Xl and Y=U we have

0 _f,(Y)f,(AXl) e(AUI,X1) a. Then e(A]D, ]D+/-) {0}.
(ii) (AUs)D 0 and (AU1), (AU2) are linearly dependent. We write

AU1 aX +IU + #2U2 + f13U3 and AU2 m2X + UI + 7U2 + 73Us where X ]D is unit.

If in (5.5) we take X X1,Y U1 we obtain 0 9(AU,X1) a. Now we have case (i).
It is easy to see that the rest of cases (if (AU3) 0 and (AU1), (AU2) are linear independent or

if (AU,)]D # 0, 1,2,3) are similar. That is, 9(A]D,]D+/-) {0}. Thus M, [1], is an open subset of a

geodesic hypersphere or of a tube of radius r, 0 < r < 1-I/2, over Qpk, k { 1, ., m- 2} or of a

tube of radius r, 0 < r < 1-I/4, over CPm.
In the second case, M has 3 distinct principal curvatures Al =cot(r) with multiplicity

4(m k 1), A2 tart(r) with multiplicity 4k and a 2cot(2r) with multiplicity 3

Let us take a unit X such that AX AX. If we develop 9((7xS)OlX, U) we obtain

c (hcot(r) cot2(r) + 3- 2hcot(2r) +4cot2(2r))cot(r). If we take a unit Y such that

AY ,k2Y and develop g(( yS)cbiY, Ui) we get c htan(r) tan2(r) + 3 2hcot(2r)
+ 4cot (2r))tan(r). From this we get tan (r) 1 which is impossible

The same result is obtained ifM is an open subset of a tube of radius r, 0 < r < 1-I/4, over CP
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On the other hand, if M is an open subset of a geodesic hypersphere M has two distinct principal
curvatures, A cot(r) with multiplicity 4(rn 1) and ca 2cot(2r) with multiplicity 3 Then it is easy

to see that such an M satisfies (1 3) and this finishes the proof

Finally, the fact of a real hypersurface M of QP’", n 3, being pseudo-Einstein is equiva-

lent to the fact that 9(SX, Y)- ag(X,Y) for any’ X,Y D and that U,,--1,2,3, are

eigenvectors of S This s eqmvalent to 9(SX, Y) pog(,k’,)’ for any X,Y D and

Po (P- 19(SU, U,))/4(m- 1) This is equivalent to SX Z:,; If,X)SU, poX-

9(SX, U)U + Z__f(X)9(SU,U)U, + poif,(X)U 0. If we define the tensor P as P(X,Y)
9(SX, Y)- pog(X,Y)+ p,, f,(X)L(Y) + _:,{L(SU,)f,(X)f,(Y)- f,X)f,(SY) f,(SX)

f,(Y)} for any X, Y tangent to M and compute its length we obtain

But it is easy to see that for any real hypersurface M

(5 7)

Then (1 4) follows from (5 6), (5 7) and the expression of P0 Moreover if U,, 1,2,3, are

eigenvectors of 5’ we obtain the equality in (1 4) Thus we have finished the proof of Theorem 5
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