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ABSTRACT. In this paper we shall obtain certain results on the structure defined by F(K,
)K+t) and satisfying FK )K+XF 0, where F is a non null tensor field of the type (1,1)

Such a structure on an n-dimensional differentiable manifold M" has been called F(K, (-)K+I)
structure of rank "r", where the rank ofF is constant on M and is equal to "r" In this case M is called

an F(K, )K+I) manifold The case when K is odd has been considered in this paper
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1. INTRODUCTION.
Let Fbe a non zero tensor field of the type (1,1) and of class C on M such that [2]

FK )K+IF 0 and F )’+XF 0 (1 1)

for 1 < w < K, where K is a fixed positive integer greater than 2 The degree of the manifold being K,

(K _> 3). Let us define operators on M by:

i de__f(_ )K+I FK-1, r de=f/_ (_)K+IFK-1 (1.2)

where I denotes the identity operator on M’. Thus from (1.1) and (1.2) the following results are obvious

f+=I, i2= i, 2 r.

For F satisfying (1.1), there exists complementary distributions - and )(,/, corresponding to the projection

operators i and rh respectively. Now we state the following theorems [2].
THEOREM (1.1). We have

F. F F and Frh rF 0 (1.3)

THEOREM (1.2). Let the tensor field F( :/: 0) satisfy (1 1) and let the operators and th defined

by (1.2). Then it admits an almost product structure on , and null operator on/17/. That is

Fk-li i and FK-lrh rhFK-1 0 (1.4)

Then F=1 acts on as an almost product structure and on AS/as a null operator.
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THEOREM (1.3). If in M there is given a tensor field F(F O,FK- :/: I) of type (1,1) and

of class (7 such that Ftc-- (-)h’+ZF 0, then M admits an almost product structure

2( )K+FK- I where de=f i- .
PROOF. We have

2(--)K+FK-!

Then

Also,

Thus,

tI if Fu- -I

)2K+2F2K-2 )K+I Fn-a=4(- +I-4(-
4FKFK-2 + I 4( ) F
4FN- + I 4FN-1, from (1.1)

--y.

- I if F-1 - I,

and

0.’2
-I

Hence is an almost product structure.

2. METRIC FOR F(K, )K+I) STRUCTURE.
THEOREM (2.1). Let M be an F(K,-(-)z"+) manifold of degree K defined by

FK )K+IF 0 and F )+IF :/: 0 for 1 < w < K,and K is a fixed positive integer greater

than 2, then:

there exists a positive definite Riemannian metric g with respect to which and/r are orthogonal
and such that:

HH:gts Wfntgt, gs,

where

and the rank ofF is odd.

K-1
H F- and H

PROOF. Let us consider local coordinate system in the manifold M and let us denote the local
components of the tensor in the set {F, i,, H} by . Here we consider r-mutally orthogonal unit

vectors u(a, b, c, 1, 2, 3, r) in and (n r) mutually orthogonal unit vectors

UA(A,B,G,... r + 1, r + 2 ,n) in /r’

(w,, &) denotes the inverse matrix of (u’, u).
Then w, and are both components of linearly independent covafiant vectors. Let
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If q5 {a, m, 9} then we put

4 X / X X

Now we can show that

W, 03

rhP.u. u and a(A, uo) 0 (2 2)

From Frh=0 we have Fu’=O and hence, Hu =0 As (UA,u,)=O by (21), we get

g(u a, u,) 0 This gives us that and/Q are orthogonal with respect to g and a From Ffft thF= 0

we have

Fm O, FtwtA O, H[wtA O, (2 3)

By virtue of (1 2), we have

HJH[ 5 m

From (2 4), (2 5)and t-F3m --0.

0, 0, we get

(25)

HjH gt + s, 9j, we obtain (2 6)

HjH +m 53
Let Hgst nzt, then we get

From (2 6) and (2 7) we get

or

H(H,, H,) o

which shows that H is symmetric.
3. CONFORMAL DIFFEOMORPHISM OF F(K, )K+) MANIFOLD.

Let M" be a C differentiable manifold " (M) be the ring of real valued differentiable function

on M" and (M’) be the moduli of derivatives of(M Then 5E(M" is a Lie algebra over the real

numbers and the elements of Y.(Mn) are called vector fields

Let (M’, 9) and (/, 9) be two Riemannian manifolds and M" /1r be diffeomorphism
Let X 3(M’), X 3(.’) be the vector fields on M and/1/ respectively X corresponds to

the Xinduced by Then diffeomorphism is called conformal diffeomorphism provided there exists
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p E 3(M’) such that

Opgo(Xo, yO e" g(X, Y)

for a E ’(M’) defined grad a (Mn) by"

g(grad a,X) X(a)

In addition to (3.1) and (3 2) if

Mn .g/

for all X, Y E 3(M (3.1)

for all X (M’) (3 2)

)K+Ipreserves F(K, structure e

FX= (FX) (3 3)

where F and F are (1,1) tensor fields with respect to M and Ifg be the Riemannian metric in 21/n,
its metric satisfies the following

9 (FX, FY) 9 (X, Y ), (3 4)

for all X, yO in that is gO restricted to/, is an almost product structure with respect to F. The

Nijenhuis tensor N(X, Y) ofFin M is expressed as follows, for all X, Y E 2((M’)

N(X, Y) [FX, FY] F[FX, Y] FIX, FY] + F[X, Y] (3.5)

We have [3]

[Xo, yO] {[X, Y]} (3.6)

By means of (3.3), (3.6) we get

N(X,y) {N(X,Y)} for all X,Y (M’), (3.7)

where N is the Nijenhuis tensor corresponding to F in

Since is also an F(K, )K+I) structure manifold therefore we can define complementary
distribution corresponding to the projection operators ]’ and rh. Let ]’ and rh be the projection operators
in/fz/’ corresponding to the structure F(K, )K+x) which is defined as follows:

def )K+I FK-1--((-- ), o de=f (I )K+IFK-1)

or,

def )K+I i)(- F(r-

o de.=f [_ (_)K+IF(K-I)

where I is the identity operator in //’. Now from (1 2), (3.3) and (3 8), it follows that in

F(K, (-)K+l) structure manifold, we have:

iX (1)K+IF(K-I’x
((-)K+IFK-Ix)-
(ix)

Similarly,

X X (-)K+IFK-I)x
(X- (-)K+IFK-Ix)
(,x)

(3.9)
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which shows that , dl preserves the structure

THEOREM (3.1). If]. and A’// be the dstnbutions corresponding to the projection operators

and dl m 1/" then we have

N (X ,Y )- {N(X, Y! + N(X, ,hYI + N(dX, YI + N(dX, (3 0)

N (X ,Y )= {N(iX, Y)+ N(X, tY)+ N(tbX, tY)+,tN(X,

+ N(dX, YI + dnN(dnX, rhY)}

PROOF. We have m consequence of(3 10)

N(X, Y) [FX, FtY] F[FtX, iY] F[iX, FiY] + F"[X, ir]

(3 ll)

(3 12)

N(X, #tY) [F X, FdY] F[F iX, IY] F[X, FrhY] + F2[X, Fnr] (3 13)

N(FnX, Y) [FFnX, FY] F[FFnX, Y] F[,’hX, FY] + F"[FnX, Y] (3 14)

N FnX Fn Y F qtX F Fn Y F F FnX Fn Y F FnX F Fn Y + F FnX FnY (3 15)

Adding (3 12), (3 13), (3 14) and (3 15) we get

N(IX, Y) + N(iX, dnY) + N(FnX, Y) + N(FnX, dnY) N(X,Y) (3 16)

So in consequence of (3 7) we get

N"(X,Y) {N(X, iY) + N(X, #tY) + N(X, IY)
+ N(X, Y)}’ {N(X,Y)}

This proves the first pa ofthe theorem The proof ofthe second pa follows from (1 2)
4. INTEGBILI CONDITIONS OF F(K, )K+ STRUCTU

If the distribution in M is integrable then N(IX, Y) is exactly the Nijenhuis tensor of
F

THEOM (4.1). For any two vector fields Xand Ywe have

(i) the distribution is integrable in M iffthe distribution L is integrable in

(ii) the distribution is integrable in M iff the distribution is integrable in

PROOF. We know that the distribution g is integrable in M iff [X, Y] 0 d the

distribution is integrable in M iff i[X, Y] 0, for y two vector fields X, Y X(M)
Hence in view of (3.6) d (3 7) d by mes of integrability conditions ofg d [4] we obtMn the

proof ofthe theorem (4 1) (i) and (ii).
THEOM (4.2). The distribution g and are both integrable in M iff go and o e

integrable in

PROOF. The proof follows directly with the help of (4 l) (i) d (ii) and (3 10)
THEOM (4.3). If the distribution is integrable inM then the almost product stcture

defined by F* de on each integrM manifold of is integrable in M iff the Mmost product stcture

defined by def F on each integral mifold of { is integrable in provided is imegrable in

PROOF. We suppose that the distribution { is integrable in M" then F induces on each integrM

manifold of almost product structure if F is F(K, (-)K+) structure In both the cases the
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structure is integrable iff the Nijenhuis tensor of M"vanishes e, N(X, ]’Y)= 0, or equivalently
]" N (]" X, ]" Y) 0 for any two vector fields X and Y

In view of (3 10) and ]" #1 rh 0 we get

:v-(x, r)= {N(X, Tr)}

DEFINITION (4.1). We say that an F(K, -(- )I. ) structure in M endowed with (1,1)
tensor field F satisfying Fc )K/IF 0 is p-partially integrable and the almost product structure

F* def F- is integrable

THEOREM (4.4). The F(K, (-),-,1) structure /J-partially integrable in M iff it is also

p-partially integrable in

PROOF. The proof follows in view olDer (4 1), Theorems (4 1) (i) and (4 3)

DEFINITION (4.2). We say that F(K, (-)1+1) structure to be partially integrable iff it is

p-partially integrable and the distribution of& is integrable
THEOREM (4.5). The structure F(K, (-)K+I) IS partially integrable in M iff it is so in

PROOF. The proof ofthe theorem follows from Definition (4 2) and Theorems (4.4) and (4.1) (i).
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