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ABSTRACT. in the prent papz, the concepts of s-closed sub-spaces, loCd[ly s-

closed spaces have been lt[oduced and chardCt[Ized. We have seen that local s-

c{osednss is seml-rgulat propetty; the concept ot s-8-closed mapping has been

introduced here and the following impo[t=nt ptopertles are establlshed

Let X --) be an s-8-closed sur3ectlon wlth s-set (Malo and Nolrl 8i) polnt

Inve[ses. Then

(d) it iS completely continuous (Ary and Gupta |i]) ad Y is locally compact

q -space, then, X Is locally s-closed.
g

(b) It f is -conttnuous IGanguly and BdSU {5) and X s a locally compact T-

space, then, Is locally s-closed.

KEY WONDS AND PHRASES. s-closed subspac, s-set, locally s-closed, s-8-closed

mapping, -contlnuous and completely continuous mapplng, regular open set, s-0-open

set, local compactness.
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I. iNTRODUCTION. S-closed spaces (Thompson L14J) and s-closed (Mayo and Nolr

[8J) spaces orlglnated from almost compact spaces by the use of semi-open sets as

Introduced by Levlne [7. Ganster and Reilly [6] had shown, towards the dlstlnction

between these concepts, that every nfnte topological space can be embedded as a

closed connected subspace of an S-closed space whlch is not an s-closed space. Nolrl

[13] further generalzed S-closed spaces to locally S-closed spaces, in this paper

we generalize s-closed spaces to locally s-closed spaces and study s-closed

subspaces. Certain mportant characterzatlons and propertles <,f locally s-close

spaces have also been established, s-0-closed mapping s ntroduced and

characterized and we have seen, under certain condltlons on the domain and co-domain

spaces, that an s-0-closed mapping would be a continuous mapping. Completely

contlnuous and -contlnuous mappings were introduced respectlvely by Arya and Gupta

[I and Ganguly and Basu [5i; by the help of these mappings we have been able to

establish certain properties which corelate locally compact T -spaces wth locally

s-closed spaces.



68 C.K. BASU

Throughout the present paper, by (X,T) or slmply by X we shall mean a

topologlcal space. A subset A of a topological space s said to be regular open

(resp. regular closed) if int(cl(A))=A (resp. cl(Int(A))=A), where cl(A) (resp.

int(A)) denotes the closure (resp. nterior) of A. A subset A of a space X is sald

to be semi-open [7] if there exlsts an open set 0 such that O Acl(O). The

complelnent of a seml-open set is called seml-closed (Crossley and Hildebrand 13]).

The semi-closure of a subset A of a space, denoted by sclA, s the ntersectlon of

all semi-closed sets containlng A (Crossley and Hildebrand [3]). A set A whlch is

both semi-open as well as seml-closed is called a seml-regular set (Malo and Nolrl

[8]). The collecton of all seml-open (resp. semi-regular, regular open) sets

contalnlng a pont x of X wll be denoted by SO(x) (resp. SR(x), RO(x)) and for the

whole space X these wlll be denoted by SO(X) (resp. SR(X), RO(X)). A polnt x of X

sad to be s-0-cluster [8] polnt of a subset A of X If for every U (SO(x),

sclU A#. Snce, for a seml-open set U, sclU is a semi-regular set [8], a polnt x

of X Is said to be an s-0-cluster pont of A ff RA, for all R SR(x). The

collection of all s-0-cluster points of A will be denoted by s-O-clA ([A] for
s-O

short). A set A is s-0-closed if A=[A]s_0 A complement of an s-0-closed set

called an s-0-open set. For a space (X,T), RO(X,T) is a base for a topology T on X
S

coarser than T and (X,Ts) is called the semi-regularizatlon space of (X,T). A

topologlcal property P xs said to be semi-regular property if whenever a space (X,T)

possesses that property P so does its seml-regularzation space (X,Ts). A subset A

of X Is s-closed [8] (resp. S-closed (Nolrl [II])) relatlve to X or slmply an s-set

(resp. S-set) if every cover of A by sets of SO(X) admits a finite subfamlly
such that A sclU (resp. AC clU). In case A X and A Is an s-set (resp. S-

set), then X is called s-closed [8] (resp. S-closed [14]). A subset A is called

Nearl compact (NC-set (Carnahan [2]), for short) if every cover of A by means of

open sets of X has a finite subfamily U
1

U (say) such that AU intclU.
n

Clearly every s-set (resp. compact) set, is an NC-set, but not conversely. A subset

A of a space X is said to be an O-set (Noiri [10]) if Aint(cl(int(A))).

2. s-CLOSED SUBSPACES. At the very outset, an example is glven to assert that,

every set, s-closed relative to X, is not necessarily an s-closed subspace of X.

EXAMPLE I. Every countable set in an uncountable set X with co-countable

topology T s s-closed relative to (X,T), but is not even an S-closed subspace.

DE’INITION i. A subset A of X s said to be pre-open (Mashour et al. [9])

A intclA. This collection includes all open sets and, even more, all -open sets.

LEMMA i. (See Dorsett [4]) Let (X,T) be a topological space and let A be pre-

open set in (X,T), then SR(A,TA)=SR(X,T) A, where T
A

is the subspace topology on A.

THEOREM i. A pre-open set A of X is s-closed as a subspace iff it is s-closed

relative to X.

PROOF. Let A be s-closed relative to X and also let IVm I } be a cover of

A by semi-regular sets of the subspace A. Then by Lemma I, there exists a semi-

regular set Um in X, for each I, such that V U A. Therefore, AU. Since

A is s-closed relative to X, there exlsts a finite subset I of I such that
o

A U, which shows that A (U A) i.e., A Vm Therefore, A is s-closed

m%Iub_space I 0 I
0as
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Conversely, let A be s-closed as a subspace. Let Vm I be a cover of A by

semi-regular sets o X. Then A U (V A). Since A as s-closed as a subspace,

there exists a flnlte subset I of I such that A U (Vm A), which shows that
o

( I
A Va. Therefore A is s-closed relative to X. 0

THEOREM 2. Let B be a pre-open set tzl (X,T). Then a subset A of B as s-closed

relative to the subspace B iff A as s-closed relatlve to X.

PROOF. The proof follows by Lemma I.

COROLLARY I. Let A and B be open sets of a space X such that A B. Then A as

an s-cloed subspace ot B ff A as an s-closed subspace of X.

PROOF. Applyng Theorem 1 and Theorem 2, we get the result.

DEFINITION 2. Let (X,T) be a topological space, then SR(X,T} forms a sub-base

for a topology called T -topology on X.
SR

LEMMA 2. A subset A of a space (X,T} is s-closed relative to (X,T) if A is

compact n (X,TsR)-
PROOF. Let A be s-closed relatlve to (X,T}. Then every cover of A by sets of

SR(X,T} has a finite subcover. But SR(X,T) forms a sub-base for (X,’ ). So every
SR

sub-basic open cover of (X,TsR) has a flnte subcover. Therefore by Alexander sub-

base theorem A is comDact n (X,TsR)-
Coverse[y, if A is compact in (X,TsR) then every sub-basic open cover has a finite

subcover. So every cover by sets of SR(X,T} has a finite subcover. Therefore A is s-

closed relative to (X,T).

THEOREM 3. Let B be a T -closed set in X and let A be any subset of X which
SR

s s-closed relative to (X,T). Then AB is s-closed relative to (X,T}.

PROOF. Let { U 6I be a TsR-Open cover of AnB. Then clearly { Ua I}
{X-B) as a TsR-Open cover of A. By Lemma 2, A as compact relative to (X,TsR}; and

so, there exists a flnlte subset I of 1 such that A e Ua} U (X--B) which
o

o
imples that ABC Ua Therefore AB s compact in (X,T }. Then by Lemma 2,

SR
I 0

A s s-closed relative to (X,T).

COROLLARY 2. If B is regular open or regular closed and A as any subset of X

which s s-closed relative to X, then A 5 as s-closed relative to X.

PROOf. Since every regular closed or regular open set is sem-reular, the

corollary follows from Theorem 2.

COROLLARY 3. If X is an s-closed space and A is a regular open set of X, then

A is an s-closed subspce of X.

PROOF. The proof follows from Theorem 1 and Theorem 3.

COROLLARY 4. If A is s-closed open subspace of X and is a regular open set

of X, hen AO is an s-closed subspace of X and (hence of A and B).

PROOf. The proof follows from Corollary 2 and Theorem 1 and second prt

follows from Corollary 1.

n
THORFq 4. If A

i
i 1,2,...,n are s-sets i.e., s-closed relative to X.

then A. is s-closed relative to X.
i=l
PROOF. Straightforward.

THEOREM 5. Let X be an s-closed spce and let A be a closed set of X and let

frontier of A, denoted by Fr(A), be s-closed relative to X. Then A is s-closed

relative to X.
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PROOF. Since X is s-closed, by Corollary 3 and Theorem I, intA is s-closed

relatave to X whenever A as closed set. Sance A=intA UFr(A), by Theorem 4, A as s-

closed relative to X.

3. LOCALLY s-CLOSED SPACES

DEFINITION 3. A space X as saad to be locally s-closed aff each polnt belongs

to a regular open neaghbourhood (nbd. for short) which is an s-closed subspace of X.

REMARK I. Clearly every s-closed space is locally s-closed space. However,

the converse is not true, ingeneral, because any uncountable set with discrete

topology is locally s-closed but not s-closed.

THEOREM 6. A topologacal space (S,T) is locally s-closed iff for each point

x { X, there exists a regular open set U containing x such that U is locally s-closed.

PROOF. Sufficaency At farst we prove that if A is a regular-open set in (X,T)

then every regular-open set in the subspace (A,TA) is also regular-open in (X,T).

Let VCA be regular-open an the subspace (A,TA). Then V antAClAV intA(AClxV)
intx(AClxV) intxA_intxcl V Aint cl V ant cl V (as VA implies

X X X X X
ant cl V Cint cl A A). Therefore V is regular open an (X,T). Now let x be any

X X X X
poant of X. Then, by hypothesis, there exists a regular-open set U of (X,T)

containlng x such that U as locally s-closed. Then there exists a regular open set V

in U such that x E V and V is an s-closed subspace of U. Therefore V as a regular-

open set in (X,T) and by Corollary I, V is s-closed subspace of X. Therefore (X,T)

Is locally s-closed.

Necessity The proof as straightforward.

THEOREM 7. Let (X,T) be a topological space. The following are equivalent

(i) X is locally s-closed;

(ii) every polnt has a regular-open set whach is s-closed relative to X;

(iii) every point x of X has an open nbd U such that int cl U is s-closed
X X

relative to X;

(iv) every point x of X has an open nbd U such that sclU is s-closed

relative to X;

(v) for every point x of X, there exists an -open set V contaanang x such

that sclV is s-closed relatave to X;

(vi) for every point x of X, there exists an -open set V containing x such

that int cl V is s-closed relative to X;
X X

(vii) for each x X, there exists a pre-open set V containing x such that

sclV is s-closed relative to X;

(viii) for every x of X, there exists a pre-open set V containing x such that

int cl V is s-closed relative to X;
X X

(ix) for every x X, there exists a pre-open set V containing x such that

intxclxV is an s-closed subspace of X.

PROOF. (i) -- (ii) Follows from Theorem 1 and from the fact that every

regular-open set is pre-open set. (ii) --) (iii) is obvious.

(iii) ---) (iv) Follows from the fact that for an open set U, sclU intclU

(Maio and Noiri [8]). (iv) -- (v) is evident, since every open set is -open.

(v) ---) (vi), (vi) --> (vii), (vii) --) (viii) and (viii) --) (ix) are straight-

forward because of the facts that every -open set is pre-open and a set V is pre-

open iff sclV intclV (Dorsett [4]). (ix) -- (i) follows from Theorem I.
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THEOREM 8. A topological space (X,T) is locally s-closed if, Its semi-

regularlzation space (X,TS) is locally s-closed.

PROOF. Let (X,T) be locally s-closed. Dorsett [4] proved that SR(X,T)=SR(X,TS)
and hence a subset A of X is s-closed relatlve to (X,T) iff A Is s-closed relative

to (X,Ts). We know that if U Is an open and V a closed subset of (X,T), then ClTU
cl

T
U and IntTV int

T
V. Using these results we can easily prove that foz a

S S

ClTsU. Therefore every regular-open setregular-open set U of (X T) IntTclTU intTs
n (X,T) is regular open in (X,TS) and vice-versa. So (X,T) and (X,TS) have the sdme

collection of regular-open sets. Therefore by deflniton, (X,T) s locally s-closed

Iff (X,TS) is locally s-closed.

REMARK 2. Local s-closedness is a seml-regular property.

DEFINITION 4. A function X ---> Y is sad to be s-8-closed if image of each

s-8-c[osed set In X is closed in Y.

THEOREM 9. A functlon f X --) Y is s-8-closed lff cl(f(A))Cf([A] for any

subset A of X.

PROOF Let be s-8-closed and A be any subset of X. Then f([A] is closed

In Y (slnce [A] is s-8-closed set). Clearly f(A)f([A and henc
s- s-0

.cl(f(A))f([A] ).
s-8

Conversely let A be an arbitrary s-8-closed set in X. By hypothesls f(A)cl(f(A))

f([A] f(A). Therefore f(A) cl(f(A)) and hence f(A) is closed In .
s-8
THEOREM I0. A sur3ectlve function f X - Y is s-8-closed iff for each subset

-I
A in Y and each s-8-open set U in X containing f (A), there exists an open set V in

-I
Y containing A such that (V)U.

PROOF. Sufficiency Suppose that the glven hypothesis holds. Let A be any s-

8-closed set in X. Let y be an arbitrary point n Y--f(A); then X--A s an s-8-open
-I

set containing f (y); by hypothesis, there exists an open set v contalning y such

-i Y
that f )C This that C Y-f(A).(V X-A. shows y V Therefore Y--f(A) i V

Y Y Y
yY-f(A) Hence Y-) Is an open set l.e., f(A) is closed in Y.

-I
Necessity Let V Y f(X--U). Snce f (A)U, It shows that AV. As f is

s-8-closed, (X-U) s closed and hence V Is open in Y. Therefore
-I -I

f (V)C X-f f(X-U) |C U.

LEMMA 3. A subset A of a space X is an s-set iff every cover of A by s--open

sets has a flnite subfamlly which covers A.

PROOF. Sufflciency part is straightforward.

Necessity Let A be an s-set. Let { Um I be an s-8-open cover of

A and also let xeA. Then there exlsts % such that x Um But U belng an s-

8-open set there exists a semi-open setXv such that x V sclV U
x Therefore

X X X

the family { V x A is a cover of A by semi-open sets of X. HenceXthere exlst
x n n

polnts say x
I

x such that A J sclV Hence ACU Therefore has a
n x

i=l i=l
finite subfamily which covers A.

THEOREM Ii. Let f X --- Y be an s-8-closed surjectlon with s-set point
-I

inverses; if A Is any compact set in Y then f (A) is an s-set in X.

PROOF. Let { U mI } be any cover of f-l(A) by s-8-open sets of X.

For ach point yA, f-l(y) U By hypothesis f-l(y) is an s-set, by Lemma 3,
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there exists a finite subfamily I of 1 such that f-l(y)CU{ u El Since we
o o

know that Union of any collectlon s-8-open sets is s-@-open and since Is an s-8-

closed function, by Theorem 10, there exists an open set V of Y containing y such
Y

that f-l(v C U { Vy y E A } is a cover of a compact set A and hence there
nY meIo -I

exist polnts Yl ’Yn of A such that A C )V which shows that f (A) is covered
i=l Yl

by a finlte number of s-8-open sets from and hence f-l(A) Is an s-set.

COROLLARY 5. Let f X --- Y be an s--closed surjection with s-set point

inverses; If X is T and Y is compact then f is continuous.
2

PROOF. Let A be a closed set in Y. Therefore A is also compact; by Theorem iI,
-i

f (A) is an s-set n X. Since every s-set is an NC-set and X is T2, by Theorem 2.1
-I

of T. Noirl [12], f (A) is closed and hence f is continuous.

DEFINITION 5. A function f X ---) Y is said to be completely continuous (Arya

and Gupta [I]) if inverse image of each open set in Y is regular-open in X.

THEOREM 12. Let f X ---Y be a completely-continuous s-8-closed surjection

with s-set point inverses. If Y is locally compact T2, X is locally s-closed.

PROOF. Since Y is locally compact T2, for each point x X, there exists a
-I

closed compact nbd. U of f(x). Since is completely continuous, f (int U) is a

regular open set containing x. But it is easy to see that every regular-open set is

semi-regular and hence an s-8-closed set (see Malo and Noiri [8]). Slnce U is
-I

compact and f is an s-@-closed function, by Theorem Ii, f (U) Is an s-set in X and
-I -i -I

xf (nt U)Cf (U). Hence, by Corollary 2, f (int U) is an s-set in X. Therefore

X is locally s-closed.

DEFINITION 6. A function f X --- Y is said to be -continuous (Ganguly and

Basu [5]) if for each xX and each W SO(f(x)), there is an open set V containlng x

such that f(V) sclW. Equivalently f is -continuous iff the inverse image of each

semi-regular set is clopen.

LEMMA 4. If f X --) Y is -continuous and KX is compact; then f(K) is an

s-set in Y.

PROOF. Let { U m I } be a cover of f(K) by semi-regular sets of Y. Then

{ f-l(u EI } is a cover of K by open sets of X. Since K is compact, there

-I
exists a finite subset I of I such that K C f (Um i.e. f(K) Umo
So f(K) is an s-set in Y. IO I0

LEMMA 5. (See [12]) Let X be a T2-space. Then for any disjoint NC-sets A and

B, there exist dlsjoint regular open sets U and V such that AU and BV.

THEOREM 13. If f X -- Y is an s-8-closed, -continuous surjection with s-

set point inverses and if X is locally compact T2, then Y is locally s-closed.

PROOF. We shall first prove that Y is T
2.

Let Yl and Y2 be two distinct points
-1

of Y. Then f (yl) and f (y2) are disjoint s-sets and hence disjoint NC-sets. By
-I

Lemma 5, there exist disjoint regular-open sets U
1

and U
2

such that f (yl) U
1

and
-i

f (y2)U2. But every regular-open set is an s-8-open set and so, by Theorem I0,
-I

there exist open sets V., 1,2 containing yj in Y such that f (V.)U. where
3 Ii

j=l,2. Thus Y is T2.
Let X be locally compact T

2
for each point x of f (y), there

exists a compact closed nbd. U of x in X. Since interior of a closed nbd. is a
x

regular-open set, it is semi-regular as well. Therefore the family { intU
-I -I

x
x f (y)} is a cover of an s-set f (y) by semi-regular sets. By Proposition 4.1
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-i

of Ma].o and Noirl [8], there exist polnts x
I Xn In (y) such that

0 n
-I

n
f (Y) C intU Let U U Then

i=l Xl i=I
x tUx

l=l

clearly an s-8-open set contalnng (y) and since, IS an s-@-closed tunctlon by
-I

Theorem I0, there xists an open set 9 conta[nlng y such that f (9 )xntU i.e.,
Y Y

y6 (intU)Cf(U). But f bng -contlnuous, (U) xs an s-set by Le,a 4. Since
Y

Y is T
2

f(U) is closed by Theorem 2.I of Nolrx [12. Therefore

y v ntclV f(U). Clearly intcl9 is a regular-open set and hence by Corollary
Y Y Y

2, ntclV is an s-set. Hence Y Is locally s-closed.
Y
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