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ABSTRACT. An arithmetical function is said to be a totient if it is the Dirichlet convolu-

tion between a completely multiplicative function and the inverse of a completely multiplicative

function. Euler’s phi-function is a famous example of a totient. All completely multiplicative

functions are also totients. There is a large number of characterizations of completely multi-

plicative functions in the literature, while characterizations of totients have not been widely

studied in the literature. In this paper we )resent several arithmetical identities serving as

characterizations of totients. We also introduce a new concrete example of a totient.
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1. INTRODUCTION
The Dirichlet eonvolut;on of arithmetical functions f and g is defined by

If I(1) # 0, then the Dirichlet inverse of f is the arithmetical function f-1 satisfying

f * f- f- * f o,

where e0(1) 1 and e0(r) 0 for n > 1. An arithmetical function is said to be multiplicative

if f(1) 1 and f(mn) f(m)f(n) whenever (rn, n) 1. A multiplicative function f is totally

determined by its values f(pe) at all prime powers pe. A multiplicetive function f is also totally

determined by its generating series

at all primes p. A multiplicative function f is said o be completely multiplicative if f(rnn)
f(m.)f(n) for all rn and n. A completely multiplicative function f is totally determined by its

values f(p) at all primes p.

In this paper we consider multiplicative functions f which can be written in the form
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where ft and f, are completely multiplicative functions. Such functions f are called totients

([14], p. 612). The functions ft and f,, are said to be integral and inverse components of f,

respectively. Note that ft and fv are not always unique. Namely, if there exists a prime p such

that .f(pe) 0 for all positive integers e, then it suffices that ft(p) and fv(p) satisfy ft(p) ft,(p).
Otherwise ft(p) and f,(p) are uniquely determined.

Totients belong to the class of rational arithmetical functions. Namely, Vaidyanathaswamy

[14] defined an arithmetical function f to be a rational arithmetical function of degree (r,s) if

there exist completely multiplicative functions gl,g2,... ,g,. and hl, h2,... ,h, such that

Totients are thus rational arithmetical functions of degree (1, 1), and completely multiplicative

functions are rational arithmetical functions of degree (1, 0). Note that all completely multi-

plicative functions are totients with f. e0.

There is a large number of characterizations of completely multiplicative functions in the

literature. For example, each of the following four conditions is a necessary and sufficient

condition for a multiplicative function to be completely multiplicative.

(i) f-l(pe) 0 for all primes p and integers e > 2,

(ii) f(pe) f(p)e for all primes p and integers e >_ 1,

(iii) f- #f, where is the Mhbius function,

(iv) fp(z)= for all primes p.

For further characterizations of completely multiplicative functions, see e.g. [I].
Characterizations of totients have not much been studied in the literature. Wall and Hsu

[15] have given a characterization. Namely, a mu]tip]icative function f is a totient if and only

if f(p), f(p2), f(p3),.., is a geometric progression for each prime p. The purpose of this paper

is to present some further characterizations. Most of our characterizations have been developed

from known properties of some concrete examples of totients.

Euler’s function (n) is a famous concrete totient, which is defined as the number of integers

x (mod n) such that (x,n) 1. It is well-known that g , where g(n) n for all n.

Thus is a totient with Ct N and b, e, where e 1. There is a large number of

generalizations and analogues of Euler’s totient in the literature. Many of the generalizations

and analogues are defined combinatorially. For example, the Jordan totient J.(n) is defined

as the number of ordered k-tuples (Xl,...,x.) (mod n) such that gcd(xl,x2,...,x.,n) 1.

Many of the generalizations and analogues also possess the structure of a totient in the sense of

Vaidyanathaswamy [14]. For example, the Jordan totient can be written as Jk N p, where

N’(n) n for all n. For further totients reference is made to the books by McCarthy [9] and

Sivaramakrishnan [11] and to the paper by Sivaramakrishnan [12]. In Section 3 of this paper we

introduce a new example of a totient denoted by (). The characterizations of Section 2 can

be used in deciding whether a function is a totient and to obtain identities for concrete totients.

We apply the results of Section 2 to the function #(k).
2. CHARACTERIZATIONS

In this section we present necessary and sufficient conditions for an arithmetical function f
to be a totient. These conditions may not be considered entirely new, since they are either con-

cei;ed from properties of some concrete examples totients or known to be necessary conditions

for totients. For brevity, we assume throughout, this section that f(1) 1.
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THEOREM 1. An arithmetical fimction f is a totient if, and only if, f is multiplicative

and for each prime p there exists a complex number a(p) such that

f(pe)_ f(p)(a(p))e-1 for all e __> 1. (1)

In this case ft(P) a(p).
PROOF. Theorem follows after some manipulation by definition of totients and proper-

ties of completely multiplicative functions. We omit the details.

COROLLARY 1. If f and g are totients, then fg is a totient with (fg)t ftgt.

COROLLARY 2 ([15]). A multiplicative function f is a totient if, and only if, for each

prime p, f(p), f(pg.), f(pa) is a geometric progression.

REMARK. Several further characterizations could be derived from Theorem using the

formula f(p) ft(p)- f(p) for all primes p.

THEOREM 2. An arithmetical function f is a totient if, and only if, there exists com-

pletely multiplicative functions g and h such that

s() g(l)h-()(l). ()
(mod n)

In this case ft =g and fv h.

REMARK. For the Euler totient 4, equation (2) reduces to

b(n) Z eo((z, n)),

which, in fact, is the definition of .
PROOF. If f is a totient, then

(mod n)

n/d

f(n) (ft * f-l)(n) Z ft(n/d)f-(d)(d/n) Z1= E Z ft(n/d)f;(d)(d/n)"
al, =1

We thus arrive at (2). The converse part follows similarly.

TttEOREM 3. An arithmetical function f is a totient if, and only if, there exists a

multiplicative function h such that

f(m)y(n)= f(mn/d)h(d)(d). (3)
al(m,n)

In this case f h.

REMARK. Sivaramakrishnan ([10], p. 27) and Sugunamma ([13], p. 40) have noted that

(3) is a necessary condition for totients.

PROOF. Formula (3) can be proved by showing that both sides of (3) are multiplicative

functions in two variables and by studying prime powers. Conversely, taking (m, n) 1 in (3)
shows that f is multiplicative. Taking m pe-, n p (e > 9.) in (3) gives

f(p) f(p)f(p,-) + h(p)f(p-).

Thus, by Theorem 1, we have the result.

THEOREM 4. An arithmetical function f is a totient if, and only if, there exists a

completely multiplicative function h such that

y(mn)- y(m) y(n/a)h(a). (4)
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In this case f, h.

REMARK. Sugunarnma ([13], p. 37) has noted that (4) is a necessary condition for

totients.

PROOF. Theorem 4 can be proved in a similar way to Theorem 3.

THEOREM 5. An arithmetical function f is a oien if, and only if, here exis completely

muliplicaive functions and h such ha

:() (/)(/)-(,l)-:((, )). ()
dim e[n

In this ce f g and f. h. Here [d, e] denotes the let common multiple of d and e.

REMARK. Vaidyanathaswamy ([14], p. 645) has noted that (5) is a necessary condition

for totients.

PROOF. Formula (5) can be proved by showing that both sides of (5) are multiplicative

functions in two variables and by studying prime powers. The converse part follows by taking

n in (5).
DEFINITION. A divisor d of n is said to be a unitary divisor (or a block divisor) of n if

(d, n/d) 1. The greatest common unita divisor of m and n is denoted by (m, n)u.
THEOREM 6. If f is a totient, then

f(mn)= f(m/d)f(n/d)ft(d)fv(d), (6)

whenever (m, n)u 1. ConverselF ff here eiss a muliplicive :unction F such

f(mn)= f(m/d)f(n/d)F(d),

1() /() + F(p) :o p,im .
REMARK. Identity (6) is termed as the BuschRamanujan identity in the literature.

Identity (6’) with the restriction (m, n)u 1 is called the restricted BuschRamanujan identity.
It is well-known that eve totient satisfies the restricted BuschRamanujan identity, s e.g.

[9], p. 53, [14], p. 655. The converse part follows aer laborious elementary computations. We
do not present the details here. The converse pa has bn studied in more detail in [6], 3.2.

THEOREM 7. An arithmeticM &nction f is a totient with f(p) 0 for prim p

i and oy there est a completely multiplicative function g with g(p) 0 d a complex
number b(p) for MI prim p such that

:(.) #() (1 (p)
(p)] (7)

REMARK. The classical Dedend totient is defined as

(n’ nn(1 + ).
THEOREM 8. If f is a totient, *hen

]n pin
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Conversely, if for all n

() l-I () .q()1-I (), (s’)

where g is completely nultiplicative with g(p) 0 for all primes p, then f is a totient with

ft g"

DEFINITION. We define 7 to be the multiplicative function such that 7(pa) p for all

primes p.

THEOREM 9. If f is a totient, then

ft(n)f() ft()f(n), (9)

whenever 7(m) 7(n). Conversely, if f is multiplicative and if there e.xists a completely

multiplicative function g such that g(p) 0 for all primes p and

g(n)f(m) g(m)f(n), (9’)

whenever /(m) /(n), then f is a totient with ft g.

REMARK. Formula (9) is well-known for the Euler totient (see e.g. [2], Exercise 2.2).
Theorems 7-9 followfrom the definition of totients and properties of completely multiplica-

tire functions. Details of proofs are left to the reader.

DEFINITION. We say that an arithmetical function f satisfies property O if f(p) 0

for a prime p implies f(pe) 0 for all e > 1.

THEOREM 10. An arithmetical function f is a totient if, and only if, f satisfies property

0 and there exists a completely multiplicative function g such that

(10)

In this case f g.

REMARK. For material relating to the functional equation (10) we refer to [3], [4] and

PROOF. Formula (10) can easily be seen t(, be valid when m and n are prime powers.

Since, in addition, both sides of (10) are multiplicative functions in m and n, we have (10). The

converse part follows by taking (m, n) 1 and m p-l, n p (e _> 2) in (10) and applying

Theorem 1.

COROLLARY 3. If f is an integer-valued totient, then

alb f (a) f (b).

PROOF. Since a[b, we have b ac. If c b, then a 1 and the result is true. Suppose
that c < b. By (10) we have

f(b)f((a,c))-- f(ac)f((a,c))= f(a)f(c)ft((a,c)).

If f((a,c)) O, then we can conclude that f(b) 0 and the corollary is valid. Suppose that

f ((a, c) - O. Then

f(b)- f(a)f(c)ft((a,c))/f((a,c)).

Now we can conclude the result inductively.
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REMARK. Formula (10) and the corollary are well-known for the Euler totient (see e.g.

[2], Theorem 2.5).
DEFINITION. Let (m, n)k denote the greatest divisor of n which is a kth power divisor

Of ,.
THEOREM 11. Let f and g be arithmetical functions and let f(n) 0 for all n. If I

and g are totients with f gt, then

(f a)(.) (f )() a-()
f(n) f(6) E f(d)

(d), where (m, nk)k, (11)

for all m and n. Conversely, if there exist completely multiplicative functions a, and such

that (a f-l)(n) (n)(f ?-l)(n) # 0 for a//n and

(c /-)(n) (a f-)(6) (/ W-)(d)
f(n) f() ,I,’, f(d)

p(d)

(,,d)=t

(11’)

for all n and for some m pe (0 <_ e _< k), then f is a totient with ft .
PROOF. Formula (11) is a direct consequence of Theorem 9 of [7].
Assume that (11) holds. We shall firstly prove that f is multiplicative. We proceed by

induction on rs to prove that f(rs) f(r)f(s) whenever (r,s) 1. This is valid for rs 1.

Assume that f(ab) f(a)f(b) when (a,b)- 1, ab < rs. We distinguish three cases.

Case 1. Let (m, rksk)k 1. Then by the inductive assumption,

f(rs)

Therefore f(r)= f(r)f().
Case 2. Let (m, rks)- rs. Asm is a prime power and (r,s)-- 1, wehaver 1or

1. Thus f(rs)- f(r)f(s).
Case 3. Let 1 < (m, rksk) < rks k. Then, by the inductive assumption and (11),

f(rs) f(r) f(s)

Now we have proved that f is multiplicative. Secondly we shall prove that f(pa)
a(p"-1)$(p) for all prime powers p". We consider two cases.

Case 1. Let p/m. Taking n p in (11’) gives f(p) a(p) W(p). Then taking n p" in

(11’) proves that f(pa) a(pa-1)f(p).
Case 2. Let pk m" As rn pe, 0

_
e _( k, we have e k. Thus taking n p in (11’) gives

f(pa) a(pa-)f(p). By Theorem 1 we now obtain the result.

THEOREM 12. Let f and g be arithmetical functions such that (f g)(n) 0 for all n.

If f and g are totients with f gt, then

f(n) f(5) -(1 g)(.) (1 g)()
g(d)

(f --id) .(d), where (m, n), (12)
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for all m and n. Conversely, if if there exist completely multiplicative functions a, and ’1 such
that (a fi-1)(n) 0 for all n and such that

f(n)
(12’)

for all n and for m pe (0 <_ e <_ k), then f is a tot;ent with ,f: e

Theorem 12 can be proved in a similar way to Theorem 1t. We omit the details.
REMARK. Identities (11) and (12) can be considered as generalized Landau identities.

The classical Landau identity [8] is

(d)
() ()"

dln

The classical Brauer-Rademacher identity (see e.g. [9], p. 75)is

d
(n) (-#(n/d)= #(n) Z d#(n/d).

I,’, dl(rn,n)
(,,u)=

This identity could also be used as a source of characterizations of totients in a similar way to
the Landau identity. We do not present details. The Brauer-Rademacher and the Landau type
identities have been considered as characterizations of totients in a very general setting in [7].

THEOREM 13. An arithmetical function f is a totient if, and only if, f is multiplicative
and if for all primes p there exists complex numbers a(p) and b(p) such that

b(p)x
f(x) a(p)x" (13)

In this case ft(P) a(p) and f,(p) b(p).
PROOF. If f is a totient, then

(f, X.(x) f,(p)xfp(x) (ft* f:)p(x)- (]-v;-) 1- ft(p)x"

Conversely, let g and h be completely multiplicative functions defined by g(p) a(p) and
h(p) b(p). Then f,(x) (g h-1)p(x) at all primes p; hence f g h -1. This completes the
proof.

Theorems 1-12 could easily be generalized to the setting of Narkiewicz’s regular convolution

(see [9], Chapter 4). We do not present the details here.
3. AN EXAMPLE

The arithmetical function O(n) is defined as the number of ordered pairs (a, b> such that
(a,b) 1 and ab n. It is easy to see that O(n) 2"(n), where w(n) is the number of distinct
prime factors of n with w(1) 0. Also O(n) is the number of squarefree divisors of n. This
suggests the standard generalization Ok of 0. In fact, Ok(n) is the number of k-free divisors of n
(see e.g. [9, p. 36, 37]). In particular, 02 0. The definition of O(n) however suggests we look
upon another generalization of O(n). We define O(k)(n) to be the number of ordered k-tuples
(al, a2,..., ak) such that a,’s are relatively prime and aa2"’ak n. It is easy to see that

O()(n)- k(’).
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The generating series of 0(k) is

1- (1-k)x
(O(k)),()

a:
(14)

at all primes p. If we define the function A(1-k) by A(l_k)(n) (1 k) (’), where fl(n) is the

total number of prime divisors of n each counted according to its multiplicity, then by Theorem

13

O(k)(n) (e * #(._;))(n),

where e =- 1. The function (1-k) is a generalized Liouville function with ),(-1) A, where , is

the classical Liouville function. Thus 0 0(2) e pA e A- e #2. Further, (1-) is

clearly completely multiplicative; hence 0() possesses the structure of a totient.

Application of formulas (1)-(12) to 0() yields the following identities.

O(k)(p) O(.)(p) for all e _> 1.

0()(1 (.c_))()(/).
(rood n) dlCx,n)

OCk)(m)Ock)(n)-- OCk)(mnld)(,C_k))(d).
d(.)

O(k)(mn) O(k)(m) O(k)(n/d)A(_k)(d).
u()l

O(k)(mn) .([d. el).((d.e))(_k)([d.e])
dim

dim eln

o()(.) H o()(p).
p[n

O()(m) O()(n), whenever

whenever (m, n)u 1,

for any completely multiplicative function h with (e h-)(n) :/: 0 for all n. If h e0, the last

two equations reduce to

O(k)(t) O(k)() ((1-k) * h-l)(d) k
(e h-1)(n) (e h-1)(d) E (e h-1)(d)

p(d) (m,

(,,)=
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Some of these identities are trivial. Note that the generating series (13) of 0() is given in (14).
Formulas (1)-(13) could also be applied to other concrete totients to obtain identities for these

totients. We leave the details to the reader.

Note that 0(k) could also be presented in terms of the unitary convolution. The unitary

convolution f @ g of two arithmetical functions f and g is defined by

( g)() ()9(/e),

where d[]n means that d is a unitary divisor of n, that is, a divisor d of n with (d, n/d) 1. It
is easy to see that

O(k) e @ e O e (e, k times).

In particular, 0 0(2) e e.
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