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ABSTRACT. The problem of diffraction of oblique interface-waves by a small bottom

deformation of the lower fluid in two superposed fluids has been investigated here assuming linear theory

and invoking a simplified perturbation analysis First order corrections to the velocity potentials in the

two fluids are obtained by using the Green’s integral theorem in a suitable manner The transmission and

reflection coefficients are evaluated approximately These reduce to the known results for a single fluid

in the absence of the upper fluid
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1. INTRODUCTION.
A time-harmonic progressive wave train propagating on the surface of an ocean experiences no

reflection if the ocean is of uniform finite depth However, if the bottom of the ocean has a deformation,

then the wave train is partially reflected by and partially transmitted over the bottom deformation Miles

obtained approximately the transmission and reflection coefficients for oblique surface-waves when

the bottom has a small deformation in the form of a long cylinder in the lateral direction Mandal and

Basu [2] extended this problem to include surface tension effect at the free surface

In the present paper the oblique surface-wave diffraction problem considered in for a single

fluid is generalized to two superposed fluids wherein the upper fluid extends infinitely upwards and the

lower fluid is of finite but nonuniform depth below the mean interface and its bottom has a small

deformation in the form of a long cylinder in the lateral direction Utilizing a simplified perturbational

analysis directly to the governing partial differential equation and the boundary and other conditions

describing the physical problem, the original boundary value problem (BVP) is reduced up to first order

to another BVP Solution of this BVP is then obtained by an appropriate use of Green’s integral theorem

to the potential functions describing the BVP and source potentials given in [3] The first order

corrections to the reflection and transmission coefficients are then evaluated from the requirements at

infinity It is verified that in the absence of the upper fluid, known results for a single fluid are recovered
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It may be mentioned here that although the source potentials in each of two superposed fluids due

to various types of basic singularities are known in the literature (cf [3],[4],[5]), their application in the

study of interface-waves in two superposed fluids is rather limited In the present paper, the two-

dimensional source potentials in each of two superposed fluids obtained earlier in [3] have been used

suitably in the Green’s integral theorem to obtain representations for the first order corrections to the

velocity potentials in each of the two fluids

2. FORMULATION OF THE PROBLEM
We consider two superposed immiscible, nonviscous, incompressible and homogeneous fluids with

lower fluid of density pl occupying the region 0 <_ y <_ h + ec(x) and upper fluid of density

occupying the region y _< 0 Here, the plane y 0 is the position of the. interface at rest and y-axis is

taken vertically downwards into the lower fluid There is a small deformation at the bottom of the lower

fluid in the lateral direction and is described by y h + ec(x) where c(x) is a bounded and continuous

function of compact support so that c(x) 0 as Ix[ oo, and e is a small positive number

characterizing the smallness of the deformation Far away from the deformation, the lower fluid is of
uniform finite depth h The motion in each fluid is assumed to be small and irrotational so that it is

described by the velocity potentials Re{oh(x, y, z)e-zt } and Re{(x, y, z)e-zt } in the lower and upper
fluids respectively, a being the frequency of the incoming train of progressive waves at the interface and

the time dependence e-wt being dropped throughout the analysis. Assuming linear theory,
satisfy the following coupled BVP

72 0 in the region 0 < y < h + ec(x), (2 1)

X7 0 in the region < 0 (2 2)

where 7 is the three-dimensional Laplace operator,

u u on y 0, (2.3)

K + I,u s(K + u) on y 0

where s p2/pl, K a2/g, g being the acceleration due to gravity,

bn 0 on y h + c(z)

where n denotes the inward drawn normal to the bottom,

0 as yoo.

(24)

(2 5)

(2.6)

A train of progressive interface-waves represented by the velocity potentials o(x,y)e and

o(x, y)e in the lower and upper fluids respectively where

cosha(h y)
(x’ Y)

sinhah
e’ (2 7)

0(z, y) eu+’" (2 8)

is obliquely incident upon the bottom deformation from negative infinity. Here a is the unique positive
zero of A(k) where

A(k) K cosh kh + {s(K + k) k} sinhkh, (2 9)

and v a sin0, # a cos0 where O characterizes the oblique incidence of the wave train 0 0

corresponds to normal incidence This wave train is partially reflected by and partially transmitted over

the bottom deformation so that q and satisfy the infinity requirements
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e + R e as x x (2 11)

where T and R denote respectively the unknown transmission and reflection coefficients

Assuming to be very small, the bottom condition (2 5) can be expressed in approximate form [2]
as , + e{c’(x) c(:r)y,} + 0(e2) 0. (2 12)

In view of the geometry of the problems we can assume

,(, y, )= (,)’
,(, y, ) (z, y)

so that (x, y) and (x, y) satisfy the following BVP

27 u2) 0 in 0 < y < h+ec(z), (2 14)

(V u2) 0 in y < 0

where V is the two-dimensional Laplace operator,

(2 15)

Cu ’u on y 0, (2 16)

K +u s(K+ Cu) on y 0 (2 17)

{’ }+ (c()) , + o(d) o on y h (2 18)

since satisfies (2.14), and

V-O as y -oo. (2.19)

Also , /, satisfy the infinity requirements

T Co(X, y)
,o(z,y)

[o(z,y)]o(z,y)

as x oo, (2 20)

+R o( x,y) (2 21)
o( x, y)

as x oo

3. METHOD OF SOLUTION
In view of the approximate bottom condition (2 18) coupled with the fact that an interface-wave

train experiences no reflection if the lower fluid has a uniform bottom, we can assume a perturbation
expansion for , ,T and R in terms of e as

o + + O(d),
o q- eel q- O(e2),

(3 1)
T 1 + (T + O(e2),
R eR, +O(e2)

Using the expansions (3.1) in (2 14) to (2 21) we find that ql, /31 satisfy the following BVP

(27 u2)1 0 in 0 < y < h (3 2)



366 B N MANDAL and U BASU

2V )f-O n 5’_<0, (33)

(34)

KqS + s(KqS_, + 2) on 5’ 0 (35)

where

qS q(m) on 5’- h

d
q(x)

sinh oh # -z (c(x)e’"’) c(x)ew

Also, ql, 1 satisfy the following infinity requirements,

o(, ) ]TI
1 ’0 (’ 5’) J

R1 0(Z Y)

as x oo, (3 7)

as x c (3 8)

(36)

Again, we apply the Green’s integral theorem to l(X,y) and H(x,y; , rl) in the region bounded

externally by the lines y=0(-X_<x<_X), x= +X(-Y_<y_<0), y=Y(-X_<x<X) and

ultimately make X, Y c Here we note that H(x, y; , rl) has no singularity in the region Then we

find

0 [q21Hv- Hq21y]v=odx. (3 9b)

Multiplying (3 9b) by s and subtracting from (3 9a) we find

2r1(, r/)= q(z)G(z,h;,7)dz + [(lGy- Gly)- s(7,Hu- gl)]v=od:c

Using the conditions (3 4) and (3 5) for 4)1 and 1 and the conditions on 5’ 0 for G and H given in the

Appendix, we find that on 5’ 0,

To solve the above coupled BVP, we need two-dimensional source potentials for the modified

Helmholtz’s equation due to a line source submerged in either oftwo superposed fluids wherein the lower

fluid is of uniform finite depth below the mean interface 5’ 0 and the upper fluid extends infinitely

upwards When the source is submerged in the lower fluid at ((,r/)(0 < r/< h), let G(x, 5’; (, r/) and

H(z, 5’; (, r/) denote the source potentials in the lower and upper fluids respectively, and when the source

is submerged in the upper fluid at (, r/)(r/< 0), let G(x, y; , 7) and H(x, y; , 7) denote the source

potentials in the lower and upper fluids respectively Expressions for these source potentials and their

asymptotic behaviors as [x- c] oo are given in [3] and are reproduced in the Appendix after

correcting the misprints
To find qa (, T])(0 < f] < h) we apply Green’s integral theorem to ql (X, y) and G(x, y; , rl) in the

region bounded externally by the lines y=0(-X_<x_<X), x= +X(0_<5’_< h),
y h(- X _< x <_ X) and internally by the circle C with center at ((, r/) and radius 6, and ultimately

make X oe and 6 0 We then obtain

27r1 (, r/) q(x) G(x, h; , rl)dx + [lGy Gly]y=o dx (3 9a)
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K

Thus the term wthin the square bracket in the second integral vanishes identically Hence we obtain

(, ) q(z)a(z, h; , v)dz 0 < < h. (3 0)

To find if31 (,/’])(T] < 0) we apply Green’s integral theorem to @1 (x, y) and H(x, y; (, r/) in the

region bounded externally by the lines y=0(-X_<z_<X), x= -t-X(-Y_<y<_0),

y Y( X _< z _< X) and internally by the circle C’ of radius 6 with center at ((, r/) and ultimately let

X, Y oo and 6 0 We then find

2r(,r) [-b]=odz. (3 lla)

Again, we apply the Green’s integral theorem to (x, y) and Gx, y; (, r/) (r/< 0) in the region bounded

externally by the lines y=0(-X<x_<X), x= -I-X(0_<y_<h), y=h(-X_<x_<X) and

ultimately make X oo Noting that G has no singularity in the region we find

0 [qly qlyV---] y=O dx + q(x)-(x, h" , 7)dx. (3 lb)

Multiplying (3 la) by s and adding with (3 lb) we obtain

2T831 (, T]) [(qly qly) 8(31y )ly)] y__0
dx + q(x) G(x, h" , 7)dx (3 12)

The term in the square bracket of the second integral vanishes because of the conditions satisfied by
1, and G, H at y 0 Thus we find

(,) q(z)a(z, h; ,)az, v < O. (3 3)

4. EVALUATION OF TIAND R1
T1 and Ra can be evaluated from the behavior of 1(, r/) or bl ((, r/) as ( oe and -oo

respectively in (3.10) or (3 13). To find Ta we note from (3.7) that

1 (, ) T1o(, r/) as cx.

Also from (3.10) after using (A3) we find as c

sinh ah
ql (, ?’])

#(h -’]- ]- sinh2ah)
q(x)dx o(, 7)

Thus

sinh ah

#( + L sinh2ah)
e q(x)dx

ia__ s_e_cO c(z)dx.
h + L sinh2oh

(4 1)

It is verified that the same expression for T1 is also obtained by noting the behavior of 31 (, T]) as ( o

in (3 7) and (3 13).
Again, to obtain R1, we note from (3 8)
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1 ((, r/) R0( (, r]) as ( o

and using (A3) in (3 10) we find

sinh ah /#(h_(_l- si--n-ah) eWq(x)dx 0( , ) as

Thus

sinh ah
RI #(h_l sinh2ah)

q(x)dx

iasecOcos20 c(z)eUd:r
h + k sinh ah

(4 2)

It is again verified that the same expression for R1 is also obtained by noting the behavior of @1 (, 7) as

( o in (3 8) and (3 13)
It may be noted that in the absence of the upper fluid (s 0), the results of for a single fluid are

recovered In that case a is the unique real positive zero of/(k) K cosh ah k sinh kh The results

for normal incidence of the wave train are obtained by putting 0 0 For 0 r/4, R1 vanishes

independently of the bottom deformation This was also observed by Miles for a single fluid Also,
once the functional form of c(z) is known, T1 and R1 can be obtained explicitly
APPENDIX

(a) G(x, y; , r/) and H(x, y; , )
G(x, y; , rl) and H(x, y; , rl) satisfy

V vg.)G 0 in 0 _< y < h except at (, r/)(0 < r/< h),
a K0() as (( ) + (U ’))/ 0,

(V2 u2)H 0in y _< 0,

Gu= Hyon y 0,

KG + Gy s(KH + Hu)on y 0,

Gu=Oony=h, 7 H 0as y -- -cx,

G, H have outgoing nature as Ix [ . Then G(x, y; , ) d H(x, y; , ) e given by (cf [3])
after coecting some spfints

1--8
a(, u; , n) Ko() Ko(’)

++J ()

e-kh(sinhkr? q- s cosh kr/) ] cos{ (k2(k- __U2)1/2(Xu2)1/2
)}x coshk(h- y)+ fi silky dk ,(A1)

H(x, y; , 7)
2 f sinh kr/+ 8 cosh kr? -kh2

Ko(vr) + e
l+s J, coshkh

e-h{s(K + k) k}(sinh kr/+ scoshk7)sechkh k(1 s)e-’ sinh khi
(A)
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where r’= {(x- ()’2 + (y + r)2),’.’ and the contour in each integral is indented below the pole at

k-a to ensure the outgoing behavior of G and H as x-(I c From (AI) and (A2) it can be

shown that as x ( c

cosha(h r/)cosha(h ) e’ ’ ’’ ’G(x, y; (, ) 27vi (A3)
h + -: sinh ah (a2 /22 )l

cosha(h r/)sinhah e"u e ....--,,/i-t
H(z, y; (, r) 27rz

(b) G(x, V; , rl) and H(x, y; , rl)

h + -sinhah (2 v"_)/2
(A4)

G(x, V; , 7) and H(x, y; , rl) satisfy

(7 2-v2)=0in0<y< h,

u2) 0 in y _< 0 except at (, r/) (r/< 0),
H Ko(ur) as r 0,

Gj H on y 0,

KG + Gy s(KH + Hv) on y 0,

Gy=Oony=h, 7 H 0 as y

G, H have outgoing nature as Ix 1 oo Then G(x, y; , rl) and H(x, y; , r/) are given by (cf [3]) after

correcting the misprints

G(x, y; , )
1 + s /k(k)

cosh k(h y)

e-h } cos((k ,)l/( )}+csinhky e
(k Zi dk (AS)

(A6)

where again the contour in each integral is indented below the pole k a to ensure the outgoing

behavior ofG and H as Ix (I oo. From (A5) and (A6) it can be shown that as Ix 1 oo

(z, y; , r) 2sTri
e’’ sinh ah cosh a(h y) e’(2-")1/1x-1

(A7)
h + L sillh a (a2 v2) 1/2

e’(n+v) sinh ah e
n(x, y; , rl) 2sTri

h + .L sinh ah (a v)/
(A8)
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