ON THE SHIFT OPERATORS

M. M. AGGOUR

Department of Mathematics Faculty of Education, Ain Shams University Roxy, Cairo, EGYPT

(Received May 3, 1994 and in revised form March 1,1995)

ABSTRACT. The purpose of this paper is to show that the weighted s-shift operators and so the weighted shift and the right shift operators have the SVEP, but the left shift operator has not Also, if $T, S \in B(X)$ are quasi-similar operators then, it is shown that T has the SVEP iff S has the SVEP Finally, the paper shows that the right and left shift operators are not decomposable

KEY WORDS AND PHRASES. The shift operators, decomposable operators, single-valued extension property (SVEP)

1991 AMS SUBJECT CLASSIFICATION CODES. 47

INTRODUCTION.

Throughout this paper, the following notations are used

- \mathbb{C} the complex plane, X-A complex Banach space, B(X) the class of all bounded linear operators on X,
- $\sigma(T)$ the spectrum of $T \in B(X)$,
- $\sigma_p(T)$ the point spectrum of $T \in B(X)$,
- \overline{A} the closure of A (in a given topological space),
- A^0 the interior of A (in a given topological space),
- T^* the adjoint of T,
- T/Y the restriction of $T \in B(X)$ to the invariant subspace $Y \subset X$

1. THE SINGLE-VALUED EXTENSION PROPERTY (SVEP)

DEFINITION 1.1. [1]

 $T \in B(X)$ is said to have the single-valued extension property (SVEP) if for every function $f: D(\subset \mathbb{C}) \to X$ analytic on the open set D, the condition

$$(\lambda - T) f(\lambda) = 0$$
 on D implies $f \equiv 0$

If T has SVEP then for any $x \in X$, $\rho_T(x)$ will denote the maximal domain of existence of the analytic X-valued function \tilde{x} such that $(\lambda - T)\tilde{x}(\lambda) = x$, and the complement of $\rho_T(x)$ will be denoted by $\sigma_T(x)$ and it is called the local spectrum of T at x

If T has the SVEP then for any closed set $F \subset \mathbb{C}$, we put

$$X_T(F) = \{x : x \in X \text{ and } \sigma_T(x) \subset F\}$$
.

T Yoshino [5] proved that $T \in B(x)$ has the SVEP if $\sigma_p^0(T) = \phi$ Now, consider the Hilbert space l_2 of all square-summable sequences, i e,

$$x = (x_i)_1^\infty$$
 and $\sum_{i=1}^\infty |x_i|^2 < \infty$.

DEFINITION 1.2. [4]

Let s be an integer greater than 0 and let $(\sigma_n)_1^\infty$ be an arbitrary sequence of non-zero complex numbers An operator $T \in B(l_2)$ is said to be a weighted s-shift with weights $(\sigma_n)_1^\infty$ if there exists an orthonormal basis $(e_n)_1^\infty$ of l_2 such that

$$Te_n = \sigma_n e_{n+s}, \quad n = 1, 2, 3, \dots$$

Note that if $x \in l_2$ then $x = (x_1, x_2, x_3, ...)$ and

$$Tx = (0, 0, ..., 0, \sigma_1 x_1, \sigma_2 x_2, \sigma_3 x_3, ...)$$

THEOREM 1.1.

If $T \in B(l_2)$ is a weighted s-shift operator with weights $(\sigma_n)_1^{\infty}$, then $\sigma_p(T) = \phi$ and hence T has the SVEP

PROOF.

Let $\lambda \in \sigma_p^0(T)$, then there exists $0 \neq x \in l_2$ such that $x = (x_1, x_2, ...)$ and

$$Tx = \mu x$$
 for all $\mu \in D_r(\lambda)$

where

$$D_r(\lambda) = \{\mu : |\mu - \lambda| < r, r > o\}$$

Hence,

$$(0, 0, ..., 0, \sigma_1 x_1, \sigma_2 x_2, ...) = (\mu x_1, \mu x_2, \mu x_3, ...)$$

and so

$$\mu x_m = 0$$
, $m = 1, 2, ..., s$ and $\mu x_{n+s} = \sigma_n x_n$, $n = 1, 2, ...$

If $\mu = 0$ then $x_n = 0$ for all $n(\sigma_n \neq 0)$. If $\mu \neq 0$ then $x_m = 0$, m = 1, 2, ..., s and $\mu x_{s+1} = \sigma_1 x_1 = 0$ which implies $x_{s+1} = 0$

In the same manner, we show $x_{s+n} = 0$, n = 2, 3, ... Therefore x = 0 and this contradicts that $x \neq 0$ Hence, $\sigma_p(T) = \phi$ and T has the SVEP

COROLLARY 1.1.

V I. Istratescue [3] defined the weighted shift operators as: $S \in B(l_2)$ is called weighted shift with the weight sequence $(W_n)_1^{\infty}$ if

$$S(x_1, x_2, x_3, ...) = (0, W_1 x_1, W_2 x_2, ...)$$
 .

It is clear that weighted 1-shifts coincide with weighted shifts with non-zero weight sequence. Hence, by Theorem 1 1, every weighted shift operator with non-zero weight sequence $(W_n)_1^\infty$ has the SVEP.

PROPOSITION 1.1. [1]

Let H be a Hilbert space, if $T \in B(H)$ is an isometric non-unitary operator then T^* has not the SVEP

COROLLARY 1.2.

The right shift operator $R \in B(l_2)$ is defined by

$$R(x_1, x_2, x_3, ...) = (0, x_1, x_2, ...)$$

It is clear that the right shift operators coincide with weighted *l*-shifts with weights $(1)_1^{\infty}$ Hence, by Theorem 1 1, every right shift operator has the SVEP

COROLLARY 1.3.

The left shift operator $L \in B(l_2)$ is defined by

$$L(x_1, x_2, x_3, ...) = (x_2, x_3, x_4, ...)$$
.

Note that $R^* = L$. Since R is an isometric non-unitary operator (see [2]) and $L = R^*$, then, by Proposition 1 1, every left shift operator has not the SVEP

THEOREM 1.2.

Let T be a weighted s-shift operator on l_2 If G is an open set such that $G \subset \sigma(T)$ and $0 \notin \overline{G}$, then $X_T(\overline{G}) = \{0\}$

PROOF.

Let $x \in X_T(\overline{G})$ then $\sigma_T(x) \subset \overline{G}$, since $o \notin \overline{G}$, we have $0 \in \rho_T(x)$ and hence, there is an analytic function $f : V_0 \to l_2$ such that

$$(\mu - T)f(\mu) = x$$
 on $V_0, ...$ (1.1)

where V_0 is a neighborhood of 0 Since, f is analytic on V_0 and $f(\mu) \in l_2$, then

$$f(\mu) = (f_1(\mu), f_2(\mu), ...)$$
,

where $f_n: V_0 \to \mathbb{C}$ is analytic on V_0 for all n By (1 1), we have

$$\mu f_m(\mu) = x_m, \quad m = 1, 2, ..., s$$

and

$$\mu f_{s+n}(\mu) - \sigma_n f_n(\mu) = x_{s+n}, \quad n = 1, 2, ...$$

since $0 \in V_0$ then $x_m = 0, m = 1, 2, ..., s$ let $\mu \neq 0$ then we have

$$f_1(\mu) = f_2(\mu) = \dots = f_s(\mu) = 0$$
.

Hence,

$$\mu f_{s+1}(\mu) - \sigma_1 f_1(\mu) = x_{s+1}$$

which implies that $f_{s+1}(\mu) = x_{s+1}/\mu$ since f_{s+1} is analytic at 0 then $x_{s+1} = 0$ and so $x_{s+2} = x_{s+3} = \dots = 0$. Hence x = 0 which proves that

$$X_T(\overline{G}) = \{0\}$$
.

DEFINITION 1.3. [3]

 $T, S \in B(X)$ are called quasi-similar if there exist injective operators $P, Q \in B(X)$ with dense ranges and such that:

(i) TP = PS;

(ii) QT = SQ.

THEOREM 1.3.

If $T, S \in B(X)$ are quasi-similar then T has the SVEP iff S has the SVEP

PROOF.

Since $T, S \in B(X)$ are quasi-similar then there exist $P, Q \in B(X)$ such that

TP = PS and QT = SQ.

Now, let T have the SVEP and $(\lambda - S)f(\lambda) = 0$ where $f: D \to X$ is an analytic function on D Then $P(\lambda - S)f(\lambda) = 0$, which implies that $(\lambda - T)Pf(\lambda) = 0$, since $Pf: D \to X$ is analytic and T has the SVEP, then $Pf(\lambda) = 0$ By the injectivity of P, we have $f(\lambda) = 0$ and S has the SVEP

Conversely, let S have the SVEP and $(\mu - T)g(\mu) = 0$, where $g: G \to X$ is analytic on G Then, by the same manner above and QT = SQ, T has the SVEP

2. DECOMPOSABLE OPERATORS

Given $T \in B(X)$, an invariant subspace Y is called the spectral maximal space of T if for any invariant subspace Z, the inclusion

$$\sigma(T/Z) \subset \sigma(T/Y)$$

implies $Z \subset Y$ Denote by SM(T) the family of spectral maximal spaces of T. DEFINITION 2.1. [1]

The operator $T \in B(X)$ is called decomposable if, for any open cover $\{G_i\}_1^n$ of $\sigma(T)$, there is a system $\{Y_i\}_1^n \subset SM(T)$ such that

(i) $\sigma(T/Y_i) \subset G_i, \quad 1 \leq i \leq n,$

(ii)
$$X = \sum_{n=1}^{\infty} Y$$

PROPOSITION 2.1. [1]

If $T \in B(X)$ is decomposable then $\sigma_p^0(T) = \phi$; i.e., T has the SVEP

PROPOSITION 2.2. [1]

If $T \in B(X)$ is decomposable and $F \subset \sigma(T)$ is a closed set such that $X_T(F) = \{0\}$, then F has no interior point in $\sigma(T)$

COROLLARY 2.1.

The right and left shift operators are not decomposable.

PROOF.

Let T be a right shift operator and G an open set such that $G \subset \sigma(T)$ and $0 \notin \overline{G}$.

Since T is a weighted 1-shift with weights $\{1\}_1^\infty$ then, by Theorem 1.2, we have

$$X_T(G) = \{0\} . (2.1)$$

Now, since $\sigma(T) = \{\lambda : |\lambda| \le 1\}$ (see [2]), and $F = \overline{G} \subset \sigma(T)$ is a closed set, we get.

$$F^{o} \cap \sigma(T) \neq \phi . \tag{2.2}$$

Therefore, by (2.1), (2.2) and Proposition 2.2, we have T is not decomposable. Finally, let S be a left shift operator. Then by Corollary 13, S has not the SVEP. Hence, by Proposition 2.1, S is not decomposable

REFERENCES

- COLOJOARA, I and FOIAS, C., Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- [2] HALMOS, P. R., A Hilbert Space Problem Book, Springer-Verlag, New York, 1967.
- [3] ISTRATESCUE, V I., Introduction to Linear Operator Theory, Marcel Dekker, Inc., New York and Basel, 1985.
- [4] STOCHEL, J. and SZAFRANIEC, F. H, Unbounded weighted shifts and subnormality, *Integral Equations and Operator Theory*, 12 (1989), 146-153.
- [5] YOSHINO, T, On the spectral manifolds of the simple unilateral shift and its adjoint, *Proc. Japan Acad.*, 62, Ser. A (1986), 87-90.