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ABSTRACT. In this paper we prove two fixed point theorems for the generalized metric spaces

introduced by Dhage.

In a recent paper, Dhage [1] defined a generalized metric space as follows: Let
D:X x X x X R with the following properties:

(i) D(x, y, z) >_ 0 for each x, y, z X, with equality if and only if x y z,
(ii) D(x, y, z) D(y, x, z) D(x, z, y) (symmetry)
(iii) D(x, y, z) <_ D(x, y, a) + D(x, a, z) + D(a, y, z), for each x, y, z X.

2-metric spaces are defined by a function d: X x X x X R with properties (ii) and (iii)
above, and (i) replaced by

(i’) For each distinct pair x, y X, there exists a z X such that d(x, y, z) =/: O, and d(x, y, z) 0

if any two of the triplet x, y, z are equal.

A number of fixed point theorems have been proved for 2-metric spaces. However, Hsiao [2]
showed that all such theorems are trivial in the sense that the iterations of f are all colinear. The
situation for D-metric spaces is quite different. Some specific examples of D-metric spaces appear
in [1].

The purpose of this paper to prove two general fixed point theorems for D-metric spaces.

THEOREM 1. Let X be a complete and bounded D-metric space, f a selfmap of X satisfying

D(Tx, Ty, Tz) <_ qmax{D(x,y,z),D(x, Tx, z),D(y, Ty, z),

D(x, Ty, z),D(y, Tx, z)} (i)

for all x, y, z X, 0 < q < 1. Then T has a unique fixed point p in X, and T is continuous at p.

PROOF. Let x0 X and define x,,+l Tx,. If xn+l x, for some n, then T has a fixed

point. Assume that x,+l x, for each n. In (1), setting x xn-1, y x,, z x,,+p, we have

But

D(x,,x,,+l,x,+p) < qmax{D(x-l,X,,,x,.,+,_l),D(x,.,_l,X,,,x+,_l),

D(x,.,, Zn+l, Xn+p--1), D(x,.,_I x,+l Xn+p--1),

D(xn,xn,xn+p-l)}. ()

(3)
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and

D(x,,x,+l,x=:+,-1 <_ qmax{D(x,_,x,-,,x,+p_2),D(x,.,-1,x,,x,.,+p-2),

D(z,., x,+ xn+p-2), D(z,_I z,.,+ 1, x,,+p-2),

D(x,,x,,x,+p_2)}, (4)

D(x,-l,z,+l,z,+,-1) <_ qmax{D(z,-2,z,-,,z,+p-2),D(x,-2,x,-,-,x,+t,-2),

D(z, z,+1, z,+t,-9- ), D(x,.,_2 z,+1, x.+p-2),

D(z., Z._l, z.+_l)}, (5)

D(x,.,,x,,x,+t,_) <_ qmax{D(x._l,x,_l,x,.,+,_2),D(x,_l,x,.,,x,+t,_:)}. (6)

Substituting (3) (6) into (2) gives

D(x,.,, xn+ 1, xn+) < q2 max D(x, Xb,
b

where n- 2 _< a _< n, n- 1 _< b < n + 1, and c n + p- 2. Continuing this process it follows that

D(z,,z,+,x,+,_l) < q"maxD(x, Xb, X,:) (7)

where now 0 _< a <_ n, 1 _< b _< n + 1, and c p. Let M := supx,u,ex D(x, y, z). Then, it follows

fro?n (7) that

D(, .+,.+) < "M. (S)

Using (iii) and (8),

<_ 2Mq" 4-

<_ 2Mq" 4- D(x,.,+l,X+t,,x,.,+2 4- D(x,.,+,x,,+2, x,.,+t,+

+ D(x+,
< 2M(q" 4- q,,+l)4- D(x,.,+:,x,.,+,,x,+t,+ <...

< 2M(q, + q,,+ +... + q,’,+t,-) + D(x+t,_,x,,+t,,x,+.e)
,’,+t,

2Mq,<_ 2M q: < /0 as n---. cx:).

k=,
1-q

Therefore (x,,} is D-Cauchy. Since X is complete, (x,,} converges. Call the limit p.

From (),

D(x.,x+I,Tp) <_ qmax(D(x._l,Z,,p), D(z,,xr,+l,p),D(x,,_l,X,.,+l,p),D(x.,x,,p)}.

Taking the limit as n oo, and using the fact that D is continuous, yields D(p, p, Tp) <_ O, which

implies that p Tp.
To prove uniqueness, assume that w = p is also a fixed point of T. From (1),

D(p, , p) D(Tp, T,, Tp)

< q max{D(p, ,, p), D(p, Tp, p), D(,, T, p), D(p, T,, p), D(v, Tp, p) }
q mx{D(p,,, ,), D(,, ,, ,)} qD(,, ,, p). ()

But

D(w, w, p) D(w, p, w) D(Tw, Tp, Tw)
_< q max{D(w, p, w), D(w, Tw, w), D(p, Tp, w), D(w, Tp, w), D(p, Tw, w) }

q max{D(w, p, w), D(p, p, w) } qD(p, p, w) (10)
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Combining (9) and (10) yields D(p, w, p) < q2D(p, w, p), a contradiction. Therefore p w.

To show that T is continuous at p, let {y,}

_
X with limy, p. Then, substituting in (1),

with z z p, y y,, we obtain

D(Tp, Ty,,Tp) <_ qmax{D(p,y,,,p),D(p, Tp, p),D(y,.,,Ty,,p),

D(p, Ty,, p), D(y,.,, Tp, p) (11)

Taking the limsup of (11), we obtain

lim sup D(p, Ty,,, p) < q max(0, 0, lim sup D(p, Ty,.,, p), 0},

which implies that lim Ty,., p Tp, and T is continuous at p.

COROLLARY 1. Let X be a complete and bounded D-metric space, m a positive integer,

T a selfmap of X satisfying

D(T""x,T"’y,T""z) <_ qmax{D(x,y,z),D(x,T"x,z),D(y,T""y,z),

D(x,T"y,z),D(y,Tx,z)} (17)

for all x, y, z E X, 0 < q < 1. Then T has a unique fixed point p in X, and T is continuous at p.

PROOF. From Theorem 1, T has a unique fixed point p, and T" is continuous at p. But
Tp T(T""p) T""(Tp), and Tp is also a fixed point of T. Since the fixed point is unique,

p= Tp.

THEOREM 2. Let X be a compact D-metric space, f a continuous selfmap of X satisfying

D(Tx, Ty, Tz) < max{D(x, y, z), D(x, Tx, z), D(y, Ty, z),

D(x, Ty, z),D(y, Tx, z)} (12)

for all x, y, z E X. Then T has a unique fixed point p in X.

PROOF. Since X is compact, both sides of (12) are bounded.

Case I. Suppose that the right-hand-side of (12) is positive for all x, y, z in X. Define

y(z,y,z) :=
D(Tx, Ty, Tz)

max{D(x, y, z), D(x, Tx, z), D(y, Ty, z), D(x, Ty, z), D(y, Tx, z) }

Since T and D are continuous, so is f. The compactness of X implies that f assumes its maximum

at some point (u, v, w) in X. Call the value c. From (12), it follows that 0 < c < 1. Thus T now

satisfies (1) with q c. By Theorem 1, T has a unique fixed point p.

Case II. Suppose there exists a point (x, y, z) such that the right-hand-side of (12) is zero.

Then, in particular, x Tx z, and x is a fixed point of T. Suppose that w is also a fixed point

of T. Then, using the same argument as in Theorem 1, it follows that x w, and the fixed point

is unique.

COROLLARY 2. Let X be a compact D-metric space, m a positive integer, T a continuous

selfmap of X satisfying

D(Tx, T"’y, T""z) < max{D(x, y, z), D(x, T""x, z), D(y, Ty, z),

D(x,T""y,z),D(y,Tx,z)}
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for all x, y, z E X. Then T has a unique fixed point p in X.
The proof of Corollary 2 parallels that of Corollary 1.

Theorem 2.1 arid 2.2 of Dhagc [1] are special cases of Theorems and 2 of this paper.

Thcrc arc two limitations involving fixed point theorems on D-metric spaces. The first is that

the proof of the existence of a fixed point appears to require that X bc bounded. The second

is that there is apparently no reasonable contractive definition for a pair of maps on a D-metric

space.
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