A NEW CRITERION FOR STARLIKE FUNCTIONS

LING YI Department of Mathematics Ilarbin Institute of Technology Ilarbin, P R. China

SHUSEN DING

Department of Mathematics The Florida State University Tallahassee, Florida, 32306-3027

(Received November 22, 1994 and in revised form January 19, 1995)

ABSTRACT. In this paper we shall get a new criterion for starlikeness, and the hypothesis of this criterion is much weaker than those in [1] and [2].

KEY WORDS AND PHRASES. Starlike functions, univalent functions, analytic functions. 1991 AMS SUBJECT CLASSIFICATION CODES. 30C45, 30C55.

1. INTRODUCTION AND PRELIMINARIES.

Let \mathcal{A} be the class of functions f(z), which are analytic in the unit disc $D = \{z : |z| < 1\}$, with f(0) = f'(0) - 1 = 0. Let S be the set of starlike functions, $S = \{f(z) \in \mathcal{A}, Re(zf'(z)/f(z)) > 0, z \in D\}$.

R. Singh and S. Singh in [1] proved that if $f(z) \in A$ and Re[f'(z) + zf''(z)] > 0, $z \in D$, then $f(z) \in S$.

Recently, R. Singh and S. Singh in [2] proved that if $f(z) \in A$ and $Re[f'(z) + zf''(z)] > -\frac{1}{4}$, $z \in D$, then $f(z) \in S$.

In this paper we shall show that the assertion of R. Singh and S. Singh holds under a much weaker hypothesis.

LEMMA 1. Suppose that the function $\psi: C^2 \times D \to C$ satisfies the condition $Re\psi(ix, y; z) \leq \delta$ for all real $x, y \leq -\frac{(1+x^2)}{2}$ and all $z \in D$. If $p(z) = 1 + p_1 z + \cdots$ is analytic in D and

$$Re\psi(p(z), zp'(z); z) > \delta$$
, for $z \in D$

then Re(p(z)) > 0 in D.

A general form of this lemma can be found in [3]. In [4] the authors got the following result.

LEMMA 2. Let $\alpha > 0$, $\beta < 1$. If the function p is analytic in D, with p(0) = 1 and

$$Re[p(z) + \alpha z p'(z)] > \beta, \quad z \in D$$

then $Re(p(z)) > (2\beta - 1) + 2(1 - \beta)F(1, \frac{1}{\alpha}, \frac{1}{\alpha} + 1; -1), z \in D$, where F(a, b, c; z) is a hypergeometric function. This result is sharp.

By taking $\alpha = 1$ in lemma 2, we obtain

LEMMA 3. Let $\beta < 1$. If the function p is analytic in D, with p(0) = 1 and

$$Re[p(z) + zp'(z)] > \beta, z \in D$$

then $Re(p(z)) > (2\beta - 1) + 2(1 - \beta) \ln 2$, $z \in D$, and the result is sharp.

2. MAIN RESULT

THEOREM. If $f(z) \in A$ and

$$Re\left[f'(z) + zf''(z)\right] > 1 - \frac{3}{4(1 - \ln 2)^2 + 2} \approx -0.263, \quad z \in D$$
⁽¹⁾

then $f(z) \in S$.

PROOF. By using lemma 3, from (1) we have

$$Re(f'(z)) > 1 - \frac{3(1 - \ln 2)}{2(1 - \ln 2)^2 + 1} > 0, \quad z \in D.$$
⁽²⁾

From (2) and lemma 3, we have

$$Re\frac{f(z)}{z} > -2 + \frac{3}{2(1 - \ln 2)^2 + 1} \approx 0.526, \qquad z \in D.$$
 (3)

Now, we let p(z) = zf'(z)/f(z) and $\lambda(z) = f(z)/z$, then p(z) is analytic in D and p(0) = 1, $Re\{\lambda(z)\} > -2 + \frac{3}{2(1-ln^2)^2+1}$. A simple computation shows that

$$f'(z) + zf''(z) = \lambda(z)[p^2(z) + zp'(z)] = \psi(p(z), zp'(z); z),$$

where $\psi(u, v; z) = \lambda(z)(u^2 + v)$. Using (1), we have $Re[\psi(p(z), zp'(z); z)] > 1 - \frac{3}{4(1-\ln 2)^2+2}$ for each $z \in D$. Now for all real $x, y \leq -\frac{1}{2}(1+x^2)$, we have

$$Re\left[\psi(ix, y; z)\right] = (y - x^2)Re\left[\lambda(z)\right] \le -\frac{1}{2}(1 + 3x^2)Re\left[\lambda(z)\right] \le -\frac{1}{2}Re\left[\lambda(z)\right]$$
(4)

for each $z \in D$. Note that $\operatorname{Re}[\lambda(z)] > -2 + \frac{3}{2(1-\ln 2)^2+1}$, from (4) we get

$$Re[\psi(ix, y; z)] \leq 1 - \frac{3}{4(1 - ln^2)^2 + 2}$$

for all $z \in D$. Thus by lemma 1, Re[p(z)] > 0 in D, that is, $f(z) \in S$.

REMARK. For $\beta < 1$, let $R(\beta) = \{f \in \mathcal{A} : Re[f'(z) + zf''(z)] > \beta, z \in D\}$. It was proved in [4] that if $f(z) \in R(\alpha_0)$ ($\alpha_0 = \frac{1-2\ln 2}{2-2\ln 2} \approx -0.61$), then f(z) is univalent, and the constant α_0 can not be replaced by any less one. Our present theorem yields $R\left(1 - \frac{3}{4(1-\ln 2)^2+2}\right) \subset S$. Thus, a natural problem which arises is to find $\inf\{\beta : R(\beta) \subset S\}$.

REFERENCES

- R. SINGH and S. SINGH, Starlikeness and convexity of certain integrals. Ann. University MariaeCurie - Sklodowska, Lublin, XXXV, 16, Sec.A(1981), 45 - 47.
- [2] R. SINGH and S. SINGH, Convolution properties of a class of starlike functions. <u>Proc. A.M.S.</u> 106 (1)(1989), 145 - 152.
- [3] S. S. MILLER and P. T. MOCANU, Second order differential equations in the complex plane. J. Math. Anal. Appl. 65(1978), 289 - 305.
- [4] LING YI, BO GEJUN and LUO SHENGZHENG, On an inequality for some analytic functions, J. Math. Res. and Exp. (2)13(1993), 259 - 262.