RESEARCH NOTES

ON HYPER-REFLEXIVITY OF SOME OPERATOR SPACES

H. S. MUSTAFAYEV

Institute of Mathematics & Mechanics Azerbaijan and Baku, RUSSIA Ondokuz Mayis Universitesi Lojmanlari Kurupelit Kampusu, K-Blok, No 1 55139 Samsun, TURKEY

(Received May 4, 1994 and in revised form March 8, 1995)

ABSTRACT. In the present note, we define operator spaces with n-hyper-reflexive property, and prove n-hyper-reflexivity of some operator spaces

KEY WORDS AND PHRASES. Operator algebras on Hilbert spaces, reflexivity, hyper-reflexivity 1992 AMS SUBJECT CLASSIFICATION CODES. 47D25

1. INTRODUCTION

Let H be a Hilbert space, and B(H) be the algebra of all bounded linear operators on H It is well known that B(H) is the dual space of the Banach space of trace class operators If $T \in B(H)$, $R \subset B(H)$, and n is a positive integer, then $H^{(n)}$ denotes the direct sum of n copies of H, $T^{(n)}$ denotes the direct sum of n copies of T acting on $H^{(n)}$ and $R^{(n)} = \{T^{(n)} | T \in R\}$ Let P(H) be the set of all orthogonal projections in B(H) For any subspace $R \subset B(H)$, we will denote by l(R) the collection of all maximal elements of the set

$$\{(Q, P)|(Q, P) \in P(H) \times P(H), QRT = 0\}$$

with respect to the natural order It can be seen that if R is a unital subalgebra of B(H), then

$$l(R) = \{1 - P, P) | P \in lat R\}$$

where lat R is lattice of all invariant subspace of R Recall that an algebra $R \subset B(H)$ is transitive if lat $R\{0,1\}$, and reflexive if the only operators that leave invariant all of the invariant subspaces of R are the operators belonging to R Generalizing this notion, we say that an operator space $R \subset B(H)$ is transitive if $l(R) = \{(0,1), (1,0)\}$ (this is equivalent to $\overline{Rx} = H$ for any $x \in H - \{0\}$), and is reflexive if

$$R = \{T \in B(H) | QTP = 0 \text{ for every } (Q, P) \in l(R) \}.$$

In other words, R is reflexive if the seminorms d(T, R) and $\sup\{||QTP|| | (Q, P) \in P(R)\}$ vanish on R simultaneously, where d(T, R) is the distance from T to R It can be seen that

$$d(T,R) \ge \sup\{\|QTP\| \mid (Q,P) \in l(R)\}$$

for any $T \in B(H)$.

Reflexive operator space $R \subset B(H)$ is called hyper-reflexive if there exists some constant $C \ge 1$ such that

$$d(T,R) \le C \sup\{\|QTP\| | | (Q,P) \in l(R)\}$$

for any $T \in B(H)$, (see [1-5]).

In [4], an example of non hyper-reflexive operator algebras is constructed

H S MUSTAFAYEV

In the present note, we define operator spaces with *n*-hyper-reflexive property, and prove *n*-hyper-reflexivity of some operator spaces

The operator space $R \subset B(H)$ is called *n*-reflexive if $R^{(n)}$ is reflexive lt can be shown that

$$d(T, R) \ge \sup\{ \|QT^{(n)}P\| \, | \, (Q, P) \in l(R^{(n)}) \}$$

for any $T \in B(H)$ and $n \in N$

We say that the *n*-reflexive operator space $R \subset B(H)$ is *n*-hyper-reflexive if there exists some constant $C \ge 1$ such that

$$d(T,R) \le C \sup\{ \left\| QT^{(n)}P \right\| \,|\, (Q,P) \in l(R^{(n)}) \}$$

for any $T \in B(H)$

It is easily seen that if R is n-reflexive (n-hyper-reflexive) then it is k-reflexive (k-hyper-reflexive) for every k > n

2. MAIN RESULT

Let us consider in B(H) the following operator equation

$$\sum_{i=1}^{n} A_i X B_i = X.$$
(2 1)

The space of all solutions of the equation (2 1) will be denoted by R

PROPOSITION 1. R is (n + 1)-reflexive

PROOF. For given any $x, y \in H - \{0\}$, put

$$x = (B_1x, ..., B_nx, x) \in H^{(n+1)}$$
 and $y = (A_1^*y, ..., A_n^*y, -y) \in H^{(n+1)}$

Let P_x and Q_y be the one-dimensional projections on one-dimensional subspaces $\{C_x\}$ and $\{C_y\}$ respectively From (2.1), we have $(Q_y, P_x) \in l(\mathbb{R}^{(n+1)})$ On the other hand, it is easy to see that any $T \in B(H)$ is a solution of equation (2.1) if and only if $Q_y T^{(n+1)} P_x = 0$ This completes the proof.

We will assume that, in case n > 1, the coefficients of equation (2 1) satisfy the following conditions

$$||A_i|| \le 1$$
, $||B_i|| \le 1$, $A_iA_j = B_iB_j = 0$ $(1 \le i < j \le n)$. (2.2)

The purpose of this note is to prove the following.

THEOREM 2. The space R of all solutions of (2.1) and (2.2) is (n + 1)-hyper-reflexive.

To prove Theorem 2 we need some preliminary results.

Let Y be a Banach space with $Y^* = X$ and S be a weak^{*} continuous linear operator on X with uniformly bounded degree, $||S^n|| \le C(n \in N)$ Denote by E the space of all fixed points of S, $E = \{x \in X | Sx = x\}$ If $x_0 \in E$, then for any $x \in X$ we have

$$||S^n x - x|| = ||S^n (x - x_0) - (x - x_0)|| \le (C + 1)||x - x_0||$$

and consequently

$$d(x,E) \ge \frac{1}{C+1} \sup_{n} \|S^{n}x - x\|$$

PROPOSITION 3. Under the above assumptions,

$$d(x,E) \le \sup_n \|S^n x - x\|$$

for any $x \in X$

PROOF. Since E is a weak^{*} closed subspace of X, there exists a subspace $M \subset Y$ such that $M^{\perp} = E$, where M^{\perp} is the annihilator of M It can be seen that the set $\{Ty - y | y \in Y\}$ weak^{*} generates M, where T is the preadjoint of S, that is, $T^* = S$. Let $x \in X$ and let K(x) be the weak^{*} closure of the convex hull of the set $\{S^n x | n \in N\}$ By Alaoğlu's theorem, K(x) is weak^{*} compact We will show that $K(x) \cap E \neq \emptyset$ for any $x \in X$ Suppose that $K(x) \cap E = \emptyset$. By Hahn-Banach separating theorem, there exists $y_0 \in M$ such that

$$\inf_{a \in K(x)} |\langle a, y_o \rangle| = \sigma > 0$$

where \langle , \rangle is the duality between X and Y

Put

$$x_n = rac{1}{n}\sum_{k=1}^n S^k x$$
 .

Then $x_n \in K(x)$ and $||x_n|| \leq C ||x||$ Now, we will prove that

$$\lim_{n \to \infty} |\langle x_n, y_0 \rangle| = 0.$$
(2.3)

Since (x_n) is a bounded set, it is sufficient to prove the equality (2 3) in case $y_0 = Ty - y, (y \in Y)$ In that case

$$\langle x_n, Ty - y \rangle = \langle Sx_n - x_n, y \rangle = \frac{1}{n} \langle S^{n+1}x - Sx, y \rangle \to 0.$$

Now, suppose that $||S^n x - x|| \le \delta$ for some $\delta > 0$ and any $n \in N$. It is easy to see that $||a - x|| \le \delta$ for any $a \in K(x)$ Let $a_0 \in K(x) \cap E$ Then $||a_0 - x|| \le \delta$ and consequently $d(x, E) \le \delta$

PROOF. OF THEOREM 2. For any $A \in B(H)$ we denote by L_A and R_A the left and right multiplication operators $L_A: X \to AX, R_A: X \to XA$ on B(H) respectively Then we may write equation (2 1) as

$$\left(\sum_{i=1}^n L_{A_i} R_{B_i}\right) X = X.$$

Thus, the solution space R of (2 1) coincide with the set of all fixed points of the operator

$$S=\sum_{i=1}^n L_{A_i}R_{B_i}.$$

It is easily seen that S is a weak^{*} continuous linear operator on B(H) Moreover, under assumption (2 2), it can be shown (by induction) that

$$S^k = \sum_{i=1}^n L_{A^k_i} R_{B^k_i}$$

and consequently $||S^K|| \leq n$

By Proposition 3, for any $T \in B(H)$ we have

$$d(T,R) \le \sup_{k} \left\| S^{k}(T) - T \right\| = \sup_{k} \left\| \sum_{i=1}^{n} A_{i}^{k} T B_{i}^{k} - T \right\|$$
$$= \sup_{k} \sup_{\|x\| \le 1, \|y\| \le 1} \left| \sum_{i=1}^{n} (T B_{i}^{k} x, A_{i}^{*k} y) - (T x, y) \right|$$

For $||x|| \le 1$ and $||y|| \le 1$, let $x_k = (B_1^k x, ..., B_n^k x, x), y_k = (A_1^{*k} y, ..., A_n^{*k} y, -y)$ It can be seen that

 $(R^{(n+1)}x_k, y_k) = 0$ and $||x_k||^2 \le n+1, ||y_k||^2 \le n+1 \ (k \in N)$.

Therefore

$$d(T,R) \leq (n+1) \sup \left\{ \left| (T^{(n+1)}x,y) \right| \left| (R^{(n+1)}x,y) = 0, ||x|| = ||y|| = 1
ight\}.$$

Let P_x , Q_y be the one-dimensional projections (as in the proof of Proposition 1) Then we obtain

605

$$\begin{split} d(T,R) &\leq (n+1) \mathrm{sup} \Big\{ \left\| Q_y T^{(n+1)} P_x \right\| \, \Big| \, Q_y R^{(n+1)} P_x = 0 \Big\} \\ &\leq (n+1) \mathrm{sup} \Big\{ \left\| Q T^{(n+1)} P \right\| \, \Big| \, (Q,P) \in l(R^{(n+1)}) \Big\} \, . \end{split}$$

This completes the proof

COROLLARY 4. Let $A, B \in B(H)$ with $||A|| \le 1$, $||B|| \le 1$ Then, the solution space R of the equation

$$AXB = X \tag{24}$$

is 2-hyper-reflexive with constant C = 2

Generally speaking, the solution space of equation (2.4) may be reflexive For example, if $Q, P \in P(H)$, then the solution space of equation

$$QXP = X \tag{2.5}$$

is reflexive Hyper-reflexivity (with constant C = 1) of the solution space of equation (2 5) was proved in [3]

Note that the space of all Toeplitz operators τ coincide with the solution space of (2 4) in case $A = U^*$ and B = U, where U is a unilateral shift operator on Hardy space H^2 [6]

Consequently, τ is a 2-reflexive by Proposition 1 Using Theorem 2, we can deduce even more

COROLLARY 5. The space of all Toeplitz operators τ is 2-hyper-reflexive, with constant C = 2In other words

$$d(T,\tau) \leq 2 \mathrm{sup} \Big\{ \big\| Q T^{(2)} P \big\| \, \Big| \, (Q,P) \in l(\tau^{(2)}) \Big\}$$

for any $T \in B(H^2)$

On the other hand we have the following

PROPOSITION 6. The space of all Toeplitz operators τ is transitive (consequently τ is not reflexive)

PROOF. Suppose that τ is nontransitive Then there exists $f, g \in H^2 - \{0\}$ such that (Tf, g) = 0 for every $T \in \tau$ If we put in last equality $T = U^n$ and $T = U^{*n}$ (n = 0, 1, 2, ...), then we obtain that the Fourier coefficients of the function $f\bar{g}$ are zero Since $f\bar{g} = 0$ a e, one of these functions vanishes a e on some subset of the unit circle with positive Lebesque measure By F and M Riesz uniqueness theorem [6], one of these functions is zero

Hyper-reflexivity of algebras of analytic Toeplitz operators was proved in [5]

REFERENCES

- [1] ARVESON, W., Interpolation problems in algebras, J. Functional Analysis 20 (1975), 208-233.
- [2] SHULMAN, V S, Vektor functionals, Spectral Theory of Operators 5 (1984), 192-225 (Russian)
- [3] PARROT, S, On a quotient norm and Sz Nagy-Foias lifting theorem, J. Funct. Anal. 30 (1978), 311-328
- [4] DAVIDSON, KR and POVER, SC., Failure of the distance formula, J. London Math. Soc. 32 (1985), 157-165
- [5] DAVIDSON, K R, The distance to the analytic Toeplitz operators, *Illinois J. Math.* 31 (1987), 265-273
- [6] DOUGLAS, R G, Banach Algebra Techniques in Operator Theory, New York, Academic Press (1972)
- [7] MUSTAFAYEV, H S and SHULMAN, V.S, On the denseness of vector functionals, Soviet Math. Dokl. 31 (1985), 167-170 (English translation)