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’1. INTRODUCTION
In [12], we have studied the asymptotic equilibrium of a general nonlinear difference equation

Az f(n,z), n N. ( )

After, we have studied the existence of convergent solutions of nonlinear systems whose linear part
has a dichotomy See 13, 14, 16-18] These results are obtained under absolutely summable conditions
Motivated with the work ofTrench [7] on differential equations we show that solutions of a system (1 ),
approach constant vectors as n c, under assumptions which permit some or all of sum smallness
conditions of f to be stated in terms of conditional rather than absolute convergence Through the

paper the conditional convergence will be simply called convergence while the absolute convergence will

be explicitly mentioned

This kind of problem for ordinary differential equations has been widely investigated by many
authors, for example see 1, 4, 6]

It seems to us that very little is known about the convergence of the solutions of finite difference

equations (see 15]) The only results that we know concerning this problem for second order difference

equations are given by Drozdowicz and Popenda [2], Catillo and Pinto [3], Szmanda [5], Handerson and

Peterson [8], Szafranski and Szmanda [9] and Medina and Pinto 10,11

2. PRELIMINARIES
Consider the difference system (1.1), where N {n0,n0 + 1, ...}, n0 is a given non-negative

integer, x is an m-dimensional vector, f:N R’--, R is a function and R denote the m-

dimensional real Euclidean space, A is the difference operator, e /xn x_l x, Throughout this

paper the norm of a vector or matrix is the sum of the absolute values of its elements

By a solution of Eq (1 1) we mean any function x defined on N, which fulfills Eq (1 1) for all

sufficiently large n Note that the above definition of the solution is different from this where x fulfills Eq
(l.1) for all n E N

Throughout this paper, we will suppose the following
ASSUMPTION. The m rn matrtxfunctton V ts non singular on N and

Iv(,i/(v-’(j))[ _< K < oo, , _> ,0. (2 1)

Notice that (2 1) implies
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and so nO

lim V-(n) exists (finite) (2 3)

LEMMA 1. Ifq s an m-vectorfuncnon on N and V(j)q converges, then E q converges and
3=n0 3=no

V(n) Eql -< (l+K)p, n_>no, (24)

PROOF. With

where

P’ E V(j)q., (2 6)

using summation by parts and the fundamental Theorem of sum calculus, we have

(2 7)

and

From (2.3), (2.5) and (2 6),

IA(V-I(j))p,+I[ _< pno[/l(v-l(j))l, j > no;

lim v-l(nl)pn, 0

hence, because of (2.2), we can let nl ---) oo in (2.7) we obtain

E q. V-1 (rl’)Pn -Jr" E/k(V-I(j))P:+I"
j=n j=n

Multiplying by V(n), we obtain

V(r)E q. Pn -’k V()E /k(V-I(j))P:+a"
j=n

Thus, by (2.1), (2.5) and (2.6)

[V(n)’lq, < Ipl / [V(n)/k(v-l(J))I Ip,+ll
3=n

_< Il + Ipl" [V(n)/k(v-l())[
3---n

_<(I+K);, n_>no.

DEFINITION 1. Let 7-/(no) be the Banach space of sequences h N -- R such that Vh is

bounded, with norm

Ilhll zup>_.olV(n)hl. (2 8)
IfA > O, let

7-/(no) {h 7-/(no)llhl[ _< A}.
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In addition, we need the following definition

DEFINITION 2. (See [7]) A vector ts a Ltpschtz point of a vector functton f there are

constants r, c > 0 such that k(x) s de.fined whenever

x 1 -< r (2 9)

and
(2 o)

From (3.7) and (3 8),

sup II(n; 0)l < A/(1 + K), (3 S)

which is possible because of (3 4) and the convergence of

(; o)

II(n;h)l<A/(l+K) if n_>

and h E 7-/x (no). If h E 7-/x (no), define yh by

yh= -f(j,+h3), n>na.

From (3.2) and Lemma with q, f(n, + h,), 3)h is defined and satisfies the inequality

IV(n)Yhl < (1 + K)sup II(e; h)l, n > nl.

(3 9)

Now choose nl no so that

tf x-l < r; i= l,2.

3. MAIN RESULTS
The following is our main theorem

THEOREM 1. For a given vector , suppose there are constant A > 0 and no N such that the

function f ts defined on the set

U ((n,x)II V(n)(x )1 < A,n > no}, (3 1)

and the series

I(n; h) E V(3)f(j, + h3), n >_ no (3 2)

converges if h 7"t (no). Suppose also that

II(n;h’)-I(n;h2)l <6llh1-h211, n>no, (3 3)

whenever h 1, h 7-lx (no), where

o < _< /(1 + K) (3 a)

Then Eq. (1 1) has a solution z which is definedfor n sufficiently large and sattsfies
lim V(n)(z ) 0 (3.5)

Moreover, tfy ts any solutton ofEq. (1 1) such that

dimooV(’)(u. ) o, (3 6)

then z y, for n suffictently large.
PROOF. Ifh 7-/x(no) then from (3.3)

II(n; h)l < [I(n; h)- I(n; 0)1 + II(n; 0)1,

< 6, + IZ(n; 0)1. (3.7)
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From this and (3 9),

IV(n)Yh,,I _< ,, n _>

Therefore h 7-/A(n), that is, 3) transforms 7"/x(nt) into itsel Now, suppose h’ 7-lx(nl ),
(i 1, 2) Then Lema with qn f(n, + h) f(n, + h) implies that

IV(n)(Yh yh)[ < (1 + K)[I(n;h)

(3 0)

and so, from (2 8) and (3 3) (with n0 nl),

IlYh Yh2ll < 5(1 + K)llh h2ll.
Hence, from (3 4), 3) is a contraction mappings of 7-/A(n) into itself, and therefore there is an

h x(nl) such that h yh, that is

From Lemma 1, with q, f(n,( + h), lirnV(n)h 0. Therefore the function x ( + h

satisfies Eq (1.1) and (3 5) If y satisfies Eq (1.1) and (3.6), then h y ( is in x(no) for some

n2 > n, and

[S0, + S0, + >_

By an argument like that which led to (3 10),

lib- hll _< 6(1 + K)llh’ hll,

which implies that h h for n > n2, because of (3 4) This implies that x, y,, for n sufficiently
large.

We now apply Theorem to the system

AXn a(n)(Xn) + gn, n >_ no. (3 l)

THEOREM 2. Suppose A is an m x matrixfunction and g is an m-vector.function, both defined
on N, and is a Lipschitz point ofthe f.-vecorjnction . Suppose also that

V(j)[A(j)() + g,] (3,12)
J=no

(3.13)

(3.14)

(3.15)

(3.16)

converges and

IV(j)A(j)I Iv-’(J)l <
?=’no

Then the conclusion of Theorem I holdsfor Eq. (3.11).
PROOF. Let

which is finite because of (2.3). Let 6 be any number that satisfies (3.4), let c be as in (2.9), and choose

n2 so that

c IV(j)A(j)I IV- (J)l <- 6,

which is possible because of (3.13). Henceforth, let n _> n2. Finally, let

A =r/a,

with r as in (2.9). We will show that ) satisfies the requirement ofTheorem 1, for

f(n,x) A(n)b(x) -F (3.17)

We must first show that f(n,x) is defined on U, for U given as in (12). If(n, x) E U, then
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because of (3 14) and (3 16) Since is defined for all z satisfying (2 9), while A and g are defined on

N, it follows that f(n,x) is defined on U, and f(n, + h,) is defined for n > n > no ifh E 7"l(no)
Moreover, if h, h E 7-t (n0), then

by (2 8) and (2 1) This, (3 15) and (3 18) imply that

h h[E V(j)A[b( + ha) ( + h)][ < 51[ I[, n >_ n2. (3 19)

With f as in (3 17), the functional in (3 2) becomes I(n; h) E V(j)[A(j)( + h3) + g3]
3---r

From the convergence of (3 12), I(n; 0) exists This and the convergence of the series in (3 19) with

h h and h 0 imply that I(n; h) exists for all h 7-/x(n0), fn > n2 > nl Knowing this, we can

conclude from (3 19) that (3 3) holds whenever h1, h2E 7"/x(n0). This completes the proof of
Theorem 2

Stronger results are available for a linear system

/kx, A(n)x,., + g,, n _> no. (3 20)

THEOREM 3. Suppose thatfor an m m matrixfunction A andan m-vectorfunctton g defined
Oft N,

E [V(j)A(j)V-I(J)[ < oo, (3.21)
and 3-

E V(j)[A(j) + g3] (3 22)

convergesfor a given constant vector . Then Eq. (3.20) has a umqe solunon x which sates.ties (3.5).
PROOF. Taking (x) x, the proof is similar to that ofTheorem 2 for a given constant vector .
The next theorem follows from this and elementary properties oflinear difference systems.

TIIEOREM 4. Suppose A and g are defined on N, (3.21) holds and E V(j)A(j) and

E V(J)g3 converge. Then Eq. (3.20) has a unique solution which satisfies (3.5)for any given constant

vector ; and every solution ofEq. (3.22) satisfies (3.5)for some .
PROOF. Any constant vector is a Lipschitz point of (x)= x. Moreover, if E V(j)A(j)

3:no

converges, then E V(j)A(j) converges, too. From this, the series E V(j)[A(j)+93]

converges for any constant vector . Therefore, for every constant vector , Theorem 3 ensures that

there is a unique solution of Eq. (3 22) satisfying (3.5). The second statement of Theorem 4 follows the

uniqueness given by (3.6) in Theorem and properties of linear difference systems.

EXAMPLE 1. The difference system

XlX2 -- 5/kx2 n4(xl x2)2 n n-- 2 x2 4- n
(3 23)

has the form (3.11), for n > 1.

If V(n)=diag(nU, nu-l) with # > 1, then (3.13) holds. If 1 :/:2, then straightforward

calculations show that (1,2) is a Lipschitz point of p in (3.23), and (3 12) converges if # < 4.

Therefore Theorem 2 implies that Eq (3 23) has a solution z (Zl, z2) such that
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+
as n oo for all ( 4, provided 4 (

EXAMPLE 2. We now exhibit a system z A(n)x whose solutions all tend to constant vectors,

even though ]A()J To this end, we obsee that if ( r, 2-eo co(eo) converges for

all r > 0

Now consider the system

/x2 cn-5/2 dn-3/2 x2

(3 24)

where a,b,c,d are constants and b 0, so that E IA(n)} oo, and let V(n) diag(eun new) with
n:l

0 < # < } Here V(n)A(n) converges and (3.21) holds, hence Theorem 4 implies that if 1 and 2
are arbitrary, then (3 24) has a solution such that

X (7Z) 1 --+as 7Z OO
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