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ABSTRACT. We study the problem maxhes[h(z,) + h(z2)] with zl, z2 in A. We show that

no rotation of the Koebe function is a solution for this problem except possibly its real rotation,
and only when zl e or z, z2 are both real, and are in a neighborhood of the x-axis. We prove

that if the omitted set of the extremal function f is part of a straight line that passes through

f(z) or f(z) then f is the Koebe function or its real rotation. We also show the existence of

solutions that are not unique and are different from the Koebe function or its real rotation. The

situation where the extremal value is equal to zero can occur and it is proved, in this case, that

the Koebe function is a solution if and only if z and ze are both real numbers and zz < O.

KEY WORDS AND PHRASES. Univalent Functions, Support Points, Quadratic Differ-

ential.
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1. INTRODUCTION

Let H(A) denote the set of all functions analytic in the open unit disk A {Izl < }, endowed
with the topology of uniform convergence on compact subsets. Let S denote the subset of H(A)
that consists of functions that are univalent in A and satisfy f(0) 0 and if(O) 1. It is known

[6] that S is a compact subset of H(A). H(A)* will denote the space of all continuous linear

functional on H(A).
A function f in S is said to be a support point of S if there is a continuous linear functional

n in H(A)*, not constant on S, such that L(f) >_ L(h) for all h in S. If this is the case we

will simply write f L.

An expression Q(w)dw, where Q(w) is meromorphic in a region G, is called a quadratic
differential in G. An analytic arc w(t) for which Q(w)dw > 0 (i.e. Q(w(t))(w’(t)) > 0) is called

a trajectory arc. A trajectory is a maximal analytic arc w(t) such that Q(w(t))(w’(t)) > O.
The zeros and poles for Q(w) in G are called critical points. A critical point is called an infinite

critical point if it has order -2 or less; otherwise it is called a finite critical point.

It is known ([4], [9], [7]) that each support point of S maps the disk onto the complement of a

single analytic arc P with increasing modulus and an asymptotic direction at o. It was shown

[11] that the omitted set F of a support point is a trajectory arc for the quadratic differential

L(fe/(f- w))(dw/w)2, i.e. F is an analytic arc w(t) satisfying

L(f2/(f w(t))(w’(t)/w(t)) > O. ()
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This is called the Schiffer differential equation. Furthermore F has the property that the angle
between the radius and tangent vector never exceeds n/4.

The problem of finding support points associated with a certain given functional had been

studied. For example in [5], [2] point evaluation functionals were studied, it was shown that the

Koebe function is the solution to the problem rnaxhesHh() if and only if ( in ((1- e)/(1 +e), 1)
and that no rotation of the Koebe function is a solution. If is in (-1, (1 e)/(1 + e)) then
there are two solutions related by conjugation. For any other the solution is unique.

In this paper we study the problem:

maxhesHgl,2(h), (2)

where

J,2(h) h(() + h(2) with 0 < [(,[ < 1, 0 < [2[ < 1.

We show that no rotation of the Koebe function is a solution for the problem (2) except possibly
its real rotation, and only when ( 2 or both and (2 are real. We also show that if

f J, and the omitted set of f, F, is part of a straight line segment that passes through

f(,) or f(.) then f is the Koebe function or its real rotation. We also study the case where

rIaaxhesHJ,(h 0 and in this case the Koebe function is the solution if and only if and

( are both real and ( < 0.

2. THE OMITTED SET F

Using the Schiffer differential equation (1) we can conclude that if f J1, then F satisfies

a
[a-w +b-w](-)w >0 forwinF (3

where a- f() b-

Let k, denote the function z/(1 xz)2, or for x 1 simply k. Let

L(h) h() + h() with 0 < I1 < 1.

We will need the following Lemma:
Lemma 1: Let F(z) be a function that is analytic in a neighborhood of the origin. Suppose
that there exist a sequence of real numbers such that t, 0 and F(t) is real, then F is real

on the real axis.

To prove the lemma show that all the coefficients of the Taylor series expansion of F at the

origin are real.

Theorem 1:

(a) If k is a solution for (2), then x =kl and 1 2 or are both real.

(b) Iff n, then ] L where ](z) f(2). In fact, if f,-- L uniquely then f k or

(c) Let (: and ( both be real. If neither k nor k_ are solutions for the problem (2), then the

problem (2) has at least two distinct solutions related by conjugation.

Proof: Parameterize the omitted set F of k by w 5:t with t _< -1/4. Substitution in (1)
gives the inequality

a 5
a v. (a)

Define
a 5

F(t) + ()
a-
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We claim that F(t) is real for all except possibly a/" or b/2. The claim follows from
the fact that the function F(z) is meromorphic in a neighborhood of the real axis and, from (4)
maps the line segment < -1/4 onto the positive real axis. We can apply Lemrna 1, if necessary
twice, to show that F(t) is real in a neighborhood of a/hc and b/hc. For small values of t, F can

be rewritten as

F(t) (a + b) + 2t + 2=t (1/4 + ) + (6)

From this follows the fact that is real, or x 5=1. This is because F’(0) : is real. This also

shows that a + b and 1/a + lib are both real. Consequently, either z or and are both
real. This proves part (a).

To prove part (b) note that the definition of L implies that YtL(f) L(f). If is a

unique solution for the problem maxhesL(h) then f f, so that f k or f k_l.
Part (c) follows since

[f(,) -I-- f(2)] [f(,) -t- f(2)]

This finishes the proof of Theorem 1.

The following theorem shows that the problem (2) has solutions other than k or its real

rotation.

Theorem 2: Given r in (-1, (1- e)/(1 + e)) we can find a neighborhood Ur of r such that,
whenever 1, ff are in Ur, k and k_l are not solutions for the problem (2).
Proof: Let f in S be such that f(r) > h(r) for all h in S. It is known ([5] and [2])
that f is not unique, f k and fr k_. A continuity argument shows that there exists a

neighborhood U ofr such that Ytf,() > k() for all in U,. Consequently [f() + fr(ff)] >
[k() + k(2)], whenever and are in U. A similar argument applies for k_

We note that if (1 e)/(1 +e) < , < then k is the unique solution for the problem

(2). This follows because if Yt[f(l)+ f()] > Yt[k()+ k(2)], for some f in S, then either

f() > k() or f(z) > k(’). But k maximizes {h(r): h E S} uniquely for any r with

[(1- e)/(1 + e)] < r < 1 (see [5]).
Corollary: Let r E (-1, (1 e)/(1 + e)). Then there exists U*, a neighborhood of r, such

that whenever , 2 are real in U* or 1 2 in U*, the problem (2) has at least two distinct

solutions f and g related by conjugation.

The corollary follows as a consequence of the previous Theorems.

Theorem 3: If k L then

[ (i 4)’ >- O, (7)

and

[(1- 4)] > o, (8)

and

[(1 4)] >-0’ (9)

Proof: To prove (7) parameterize the omitted arc by w(t) -t, >_ 1/4, and substitute in (1),
we obtain

a 5
> 0 for > 1/4. (10)

a+t +o+t
Multiply (10) by t and take the limit as t tends to infinity to obtain a + b > 0. Since a ,
from Theorem it follows that a > 0 and this is exactly (7).
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To prove inequality (8), we use the variation

NL(k) <_ NL(zk’P), (11)

where P has a positive real part and P(0) (see[12] p.82). From (11) we obtain

2(<) < [( / <)
(1 i_ () (P() + P())]"

Substitute P-- 1, (12) becomes

or equivalently

From this it follows that

( + )

4 4(I/[( _0 f-] < 0.

Derine
a2 b2 lr-- + b Zzo + Zz

Notice that F(z) is meromorphic in a neighborhood of the x-axis. Apply Lemma 1 and use

similar argument as in Theorem part (a) to conclude that F(t) is real for all except possibly

>0.
(1 -()3

To obtain (9), note that for any c with Icl the function

g(z)
z- :(c/ 1)z

( z)

is in S (see[3]). Consequently we have the inequality (with c--i)

)] > [- (+) - ( +)
[(i C)

/ (1 (1 ’)’
/

(1 )2 ]"

From this inequality (9) follows. This ends the proof of Theorem 3. A similar statement holds

when k_ L.
Corollary Theorem 3 and the results in [5] show that a necessary condition for k L is that

( is in a neighborhood of the line segments ((1 e)/(1 + e), 0) and (0, 1).
This is because z/(1- z) maps the circle determined by the points 1, 0, -i onto the line u v,

(where z/(1 z) u + iv). Inequality (9) then implies that

-r r 3n ( 5r-- < "( ’0 < - o < ,(i-) <

That is, ( must be in a neighborhood of the x-axis. A similar argument gives a region for in

order for k_ L.
It is not known whether k is the only rational function that maximizes the problem (2). We

prove the following:

Theorem 4: Assume f is in S with f- J,,, and suppose that f(z) is a rational function in

z. Assume further that the analytic continuation of F passes through one of the simple poles

a f(), b f(() of the quadratic differential in (3). Then F is a horizontal line segment.

Proof: It is known [13] in this case, that F is a straight line segment. Without loss of generality

parameterize F by w a + fit and use (3) to obtain the inequality

a b
[_-- + b_ a_ /t] [a / t] >_0 for a + t e r.
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when (b- a)/, -a// or 0. It follows that tF(t) is real [or all (b a)/[, -a/l,
i.e.

a b’t
[-+b-a-fit][a+t (13)

is real for close to 0. Take the limit in (13) as tends to zero to conclude that [-a/][/a]
is real or - is real. Hence F a horizontal line segment.

Note that by taking the limit in (13) tends to infinity, we obtain (a + b)/ is real, i.e.

(a + b) is real, whenever the assumption in Theorem 4 holds.

One would like to show that the solution to problem (2) is unique for any , with ,
not real. The previous Theorems and argument support this conjecture. However, it renains

an open problem.

3. THE EXTREMAL VALUE

In this section we will study the situation:

f J, and J,(f) O.

This situation occurs, for example if 1 rl > 0 and 2 r: < 0 with k(rl) + k(r2) 0 and

r: > (1 -e)/(1 + e). This case is of special interest for the following reason: If g,:(f) 0,
the quadratic differential in (3) becomes

--2a
dw (14)w(w-a)(w+a)

where a f(l) -f(e). Let a re’ and w ve’ and substitute in (14) to obtain

_2re,Odv
( )( +) )

The trajectories in (14) can be obtained from the trajectories in (15) by a rotation. It is

known ([7],[8]) that if 8 is an irrational multiple of 2 then every trajectory of (15) is dense

in the whole complex plane, i.e. it comes arbitrary close to any complex number. It follows
that the same is true for (14). Therefore if this situation occurs and argf() is an irrational

multiple of 2, then we can conclude that there exists a support point f in S with the property
that its omitted set F has an analytic continuation that is dense in the whole complex plane,

(this seems unlikely, but remains as a conjecture).
We prove the following

Theorem 5: Suppose f J,, and Jl,(f) 0. f k if and only if and are real and

6 <0.

Proof: Assume first that k is a solution for (2) and gl,(k) 0. Parameterize F by w(t) -t,
>_ 1/4, and substitute in (3) to obtain that [(a/(a + t)) (a/(a t))] is real and positive

for >_ 1/4. Define F(z) a/(a + z) a:/(a z), and note that F is meromorphi in a

neighborhood of the real axis. Therefore, we can conclude that F(t) is real for all except when

a is real. However, if a is real then and are real and 12 < 0. Considering F(t) for small

t, we have
-2t 2t 2t

Y(t) a[
a a a -’" "] for near 0,

so that a is real. Multiply F(t) by t and take the limit as oc to conclude that a is real

and positive. Therefore either a is real and positive or a is real and negative. In any case we

conclude that 1 and 2 are real and ,2 < 0.
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To prove the only if part, we need the following observation due to Leung.
Lemma A: Let f in S maps A onto the complement of an analytic arc extending to infinity.

Suppose f(1) o, and f(e’) f(e-’) for all 0 in [0, r]. Then f k.

Proof of Lemma A: Let g(z) (f(z)(1 z)2)/z. Then g(z) is analytic on z _< and g(z) 0

in A. Also g(1/z) is analytic in z _> 1. The given conditions yield g(1/z) g(z) on Izl 1. Thus

g(1/z) g(z) for all z. This implies that g(z) is bounded in the complex plane and therefore is

a constant.

We also need the following well known fact about quadratic differentials.

Lemma B: Suppose B(z)dz and A(w)dw are quadratic differentials in the z- plane and

w- plane respectively. Suppose under a slit mapping w f(z) where f is in S, we have

A(w)dw2 B(z)dz:. Assume further that f(-1) w0, where w0 is the finite tip of the slit. If

f-(w) {e’l, e’2 } for w on the slit, then

We would like to prove that if (, and (= are real, (,(2 < 0, and f J,,2 with J,,(f) O,

th,en f k.

Substitute w f(e’) in (14) to conclude that

-(z) z(z))(z) ((z) )((z) + a) ((z) (16)

is real and nonpositive for Izl 1. Recall that f(4,) a and f(6) -a and note that by the

Schwarz reflection principle,

Az(z- e’)O(z)
(z 4,)(1 41z)(z ’2)(1 4=z)

(17)

where e is the point on Izl 1 that corresponds to the finite tip of the omitted set of f, F
for a similar argument see [51). Because O(e’) _< 0, we have

(,)
Ae, (e,o e,,) (e’ e,,

(e’ ’,)(1 <,e’)(e’ <2)(1 (e’)

l1 4,e’oll 4e’ol
Therefore Ae > 0. Equate the two expressions for O(z) in (16) and (17) and divide the

resulting equation by z, then take the limit as z 0 we obtain Ae2’ 2( 2. If 1( < 0, then

Ae’’ is negative. Therefore e is negative. This implies that f(-1) is the finite tip of F and

also that O(e’) O(e-’o). We can apply Lemma B with with B(e’) O(e’) to show that

if f-’(w) {e’,e’} for w in F, then/ -0 and hence f(1) . All the conditions in

Lemma A are fulfilled so we may conclude that f k.

Remark: The problem (2) remains undetermined for many values of 4 and . We conjecture

that if [(1 e)/(1 + e)] < < and [(1 e)/(1 + e)] < < 1, then the omitted set F has an

analytic continuation that is the real axis. Otherwise, for the all other values of and , F

has an analytic continuation that spirals toward the origin.
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