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ABSTRACT. A double integral which came from a cohomology calculation is evaluated explicitly

,sing tile proi)erties of aF2 and 2F hypergeometric functions.
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INTRODUCTION.

The 1)roblem of evaluating the integral

,r/2fx/x (1--4cos2scos2t)
/j + 8 cos s cos )3/:

ddt

has l)een prol)osed by A. Lundell. The computer algebra language Maple tells the user that it

can not be evaluated explicitly but evaluates it numerically" to seven decimal places in a couple

of seconds. Mathematica, on the other hand, reduces it to the evaluation of a single integral by

performing one of the single integrals.

The integral arose as a reduction of a surface integral on a torus which came in relating the

cohomology of R3- (CU L) and R3- C where C is the circle x2+ y2= a in the xy-plmw

and L is the z-axis and where numerical calculations suggested the value rr/4 [2, p.19]. The

purpose of this note is to prove this conjecture.

}Ve first consider the more general integral

[,/2 [,/2 (1 + bcos scos t)
I(a,b,c)

J0 0 (1 +acos scos2t)cdsdt" (I.I)

We find that I(a, b, c) can be expressed as a sum of two 3F2 ’s with arguement -a. Although

there are no explicit general formulas for the analytic continuation of 3F2 ’s something remark-

able happens when c 3/2. hi this case each 3F2 can be expressed as a product of 2F ’s

of arguement -a which may now be analyticly continued throughout the complex a-plane

cut along (-oc,-1]. A further simplification occurs when b =-4 with 1(a,-4,3/2) being

expressed as a single product of two 2F ’s. A final remarkable simplification occurs with a 8



822 D.R. MASSON

when each of these 1F1 ’s can be explicitly summed in terms of gamma functions. As an end

result we then obtain

THEOREM 1.

I(S,-4, 3/2) -. (1.2)

In the next section we prove this result using the theory of hypergeometric flmctions where

(). r( + ,)/r(), (al,al,’",a,), H(aj),.
j--1

The following formulas will be needed.

2a+2B-2, a+-1/2
;z lF a+-l/2;z 1F a+fl-1/2;z

F1 2a+2Z_l,a++l/2;z 1F

;z =(1-z)-"lF
a,c-b

C C

1/2;z)
(1.6)

z-1

;tFl( a’b ;z =(1-.")c-a-t’lF(c-a’C-bc
( i)( i)r( a’ ) ( )c_l,Z" +c[c (2c a b )zlF a’cb;z

+ z(c a)(c b) iF ( a’ b )c+ 1
;z =0,

(1.8)

( a,b ) ( 2a, 2b 1 1
1F z 1F 1- z

a+b+l/2 a+b+l/2 -5

( a,b ) (2a-l,2b 1 I 1
1F1 ;z (1 z)-/

a+b- 1/2 1F a+b-1/2 -(1-z)

(1.9)

(I.I0)

a,b ) 2_
r(1 + a b)r(1/2)

2F 1 + a b;-1 r(1 b + a/2)r(1/2 + a[2)" (1.11)

These formulas are in [11, (9) axd (8) p. 186, (3) aaxd (2) p. 105, (30) p. 103, (10) and (la) p.

111, and (47) p. 104 respectively.

Then

THE PROOF.

To prove Theorem 1 we first establish four lemmas.

LEMMA 2.1. Let

u, cos2" dt, n O. 1,.. (2.1)

(2.2)
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PROOF. This result is well known. An integration by parts yields u, -u,_l,n >_ 1.

Clearly u0 r/2. Iterating we get (2.2).

LEMMA 2.2. If [al < then

(2.3)

PROOF. In (1.1) ve expand (1 + acos scos t) using the binomial theorem and do the

integration. Using Lemma 2.1 we then obtain (2.3).

We now specialize to the value c 3/2.
LEMMA2.3. If [a[ < 1 or a= 1 then

I(a,b, 3/2) = 2F ’1" -a F ’1" -a (2.4)

+F Z’%’-al F ’’-a2
PROOF. We use (1.4) for the first F on the right of (2.3) and (1.5) for the second F

on the right of (2.3).

Having established (2.4) for [a[ < one may use the. properties of F ’s to obtain an

analytic continuation of (2.4) throughout the complex a-plane cut along (-c,-1].

We now specialize to the values b -4, c 3/2.
LEMMA 2.4.

I(a,-4,3/2)--15r----aF1 1/4’i’-a F i i._a (2.5)
128

PROOF. In (2.4) we put b -4 and apply (1.7) to the first and third F on the right

of (2.4). The result is

I(a,-4,3/2)= 4(1+a)/2 2F i,li;_a F i,l-i.,_a F i i.,_a (2.6)

We now apply (1.6) to the F ’s in the brackets above and then use (1.8). This gives

I(a,-4,3/2)
128(1 / a)r’/ F

i, i._a F " i a.
1 3 ;1-t-a (2.7)

After another application of (1.6) to the second 2F above we obtain (2.5).

PROOF OF THEOREM 1. We now specialize to the case a 8. b -4, c 3/2. In (2.5)

we put a=8. We use (1.9) and(1.11) to get

( 1/2,1/2F i’i’-8 fl
1 1

r(1)r(1/2)
-1

2/F(3/4

Using (1.10) and (1.11) we also get

zF i,i._8 F, "-1
3 5 3 3r(5/4)F(9/4)2’/"

(2.9)
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"r"F2(1/2) (2.10)I(8.-4,3/2)
32F2(3/4)F2(5/4)

where ve have used the above 2F1 evaluations together with F(1) 1,F(3) 2 an(l

r(9/4) 5F(5/4)/4.._ final use ,,f the duplication formula [1.(15), 17. 5] yield. F(1/2)
r, F2(3/4)F(5/4) ,/s a,, the theorem is established.
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