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ABSTRACT. The real analytic character of a function f(z, /) is determined from its behavior along
radial directions fo(s) f(scos0, ssin0) for 0 E E, where E is a "small" set A support theorem for

Radon transforms in the plane is proved In particular if fo extends to an entire function for 0 E E and

f(z, /) is real analytic in IR then it also extends to an entire function in C
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1. INTRODUCTION
The determination of the behavior of functions on small sets is an old problem that has been studied

in many branches of analysis The purpose of this article is to study the real-analytic character of a

function of two variables f(z,l) from its behavior along radial directions fo(s) f(s cos0, s sin0) for

0 E, where E is a "small" set

We introduce a property of sets, the separation condition, that allow us to infer the behavior of

f(x, /) from that of fo(s) for 0 E. In particular, if fo extends to an entire function for each 0 E and

if f(z, /) is real analytic in ]R then it also extends to an entire function in C If fo is of exponential

order for E then so is f
The plan of the paper is as follows The second section gives the definition of the separation

condition and studies some of its properties The third section gives the main results on the

characterization of the real analytic character of f(z, /) from that of fo(s) for 0 E E, a set that satisfies

the separation condition The last section applies these results to obtain a support theorem for Radon

transforms in the plane

2. THE SEPARATION CONDITION
Motivated by its prospective use in the theory of Radon transforms, we introduce the following

definition

DEFINITION. Let e > 0 We say that a set A c_ ]R satisfies the separation condltlon of order e,

denoted as S C (e), if for each n 11 there are points 01, 0, A such that

lot 031 > eli 3lln (2 1)
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THEOREM 1. Let A C ]R be a bounded set Then

#(A) sup{e A satisfies S C (e)}, (22)

where # is the Lebesgue measure In particular, A satisfies S C if and only if #(A) > 0

PROOF. Let e < #(A) and let 6 be such that e < 6 < #(A) Let 0 E A with #(A F [01, ooD _> 6
and define 02, 0, E A recursively as

Ok+l inf{0 -’#(ffl[Ok,O]) >_ 6In}. (2 3)

Then Ok+ O 6In, 1 k 72 1 Let now/1, ...,/n A be chosen so that

IOk- Akl < (6- e)/2n.

Then ,k. Ak >_ e/n It follows that A satisfies S C (e) and, consequently,

#(A) < sup{e satisfies S C.(e)}.

Conversely, suppose A satisfies S C (e) Let I be the closed interval [infA, supA] Then I\A is open,
therefore

/\A= u U
3=1

where the U are disjoint open intervals For each q 1, 2, 3, the set

I\U U.
3=1

consists of q + 1 disjoint closed intervals Aq) zl(q) ordered from left to right Since A satisfies"*q+l,

S C (e), there exists/91, ...,/gn A, with/91 </92 < </9,,, such that

IO, 01 _> I Jl/,

(q) ifThen there are integers, 1 kl _< ]2 <_ _< kq+l <_ kq+2 n q- 2, such that /9 A

Thus

q+l q+l

3=1 =1
q+l

Z --E (k’3+l 1)
2=1

-(n-q).
n

Ifwe first let n -- oo we obtain

3=1 3=1
(2 4)

and ifwe then let q we obtain

e _< #(), (2 5)

as desired

Let now E be a subset of the circle S {z E C’lz 1} We assume E symmetric, namely,
0 E if/9 E We denote by the set of arguments of elements of E, so that E {e* ’/9 /}
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DEFINITION. We say that E satisfies the separation condition of order (for symmetric sets),
denoted as S C (e), if for each n E 1 there are arguments 0, 0T E such that

10, 0j + kTr _> (2 6)

for each k Z
Notice that the separation condition for not necessarily symmetric sets requires (2 6) to hold for k

even only In our case, however, the points e and e’(+) will be identified and that is why we require

(2 6) for all k Z

It is not hard to see that E satisfies S C (e) if and only if E N [a, a + 7r] satisfies S C (e) for some,

and hence for each, a It follows that

sup{e" satisfies S C (e)}
#()

2
(2 7)

so that, in particular, E satisfies S C if and only if # () > 0.

3. EXTENSION OF REAL ANALYTIC FUNCTIONS
Let E be a symmetric subset of the unit circle We denoted by f2E,T and fE the sectors, {z.0 < < r,z E}, (3 )

mE U E,T {Sz "0 <_ S, Z e E}. (3 2)
r>0

Let XE. be the space ofgerms of functions f defined in E,,., that satisfy the following conditions

a) f can be extended to a neighborhood of the origin as a smooth (i e C) function,

b) fo(s) f(scosO, s sin0) is real-analytic as a function ofs for I1 < r for each 0 E E,
c) the quantity

n!
0 E E (3 3)

n=0

is finite

Observe that if the functions fl, f2 extend to smooth functions F1, F2 that agree of infinite order at

the origin, then they are identified

The space XE is defined as the intersection of the Xz, for r > 0 Observe that if f E Xz then

fo(s) can be extended to an entire function of s C for each 0 ’Let F C_ S be a superset of E, E c F Then each element of XF,,. can be restricted to X.T Our

aim is to show that under suitable assumptions on E this process can be reversed, namely, each element

of X, can be extended to X,.t for some < r In particular, XE and XF would result to be

isomorphic and, by taking F S, each element ofX would extend to an entire function in C
Let us first show how to compute the directional derivatives f(r)(0) from the corresponding

derivative values f) (0) for 0 E E Indeed, let us first suppose , 0 Then for each 0 E we have

f’) (0) k
cosk0 sinn-k0 (3 4)

k=0
OxkOYn-k

If 00, 01,..., 0, E then evaluating (3 4) at 0 0 yields a linear system for the computation of the

partial derivatives
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OxkOyn-k

Solving for

Of fo(/0---x (0) (0)

gives

fn)(O) f?)(0)/n-l(O0,...,Oz-l,O+l,...,On)I-I3#zsinO (3 5)
=o :x (0o, 0)

where we have denoted by/h, (0o, On) the determinant

/Xn(00, On) det[coskOzsinn-kO]O<_k:<_n. (3 6)

These determinants are easily evaluated ifwe observe that

ZX,(0, 01 ,0,) Gn-1 (01, 0,)sin 01... sin 0,, (3 7)

x(Oo, on) zx(Oo + o, o + o), (3.8)

/XI(O0, 01) sin(Oo 01). (3.9)

This yields

Gn(0o, 0n) H sin(0, 0s). (3 10)
:<

Replacing 0 by 0, using (3 10) and doing some simplification in (3 5) give the formula

fn) (0) E fo, (0)H sin(0 0s)
=o 3#z sin(0, 0s)" (3 11)

Naturally (3 11) can be applied only if An (0o, 0n) 0, that is, only if 0, 03 7:: kr for 3 and

k Z When E satisfies the S C then such points 0o, 01 can always be found, but, more than that, if

they satisfy the separation condition

10, 0; + 1 > li 31e 0 < i, j < n, (3 12)
n+l

then f’) (0) can be estimated on S\E from estimates on E. Actually, if we suppose that ]f’) -< b, for

each 0 E then (3 11) yields

-< I-I Isin(O,- 03)1-1, (3 13)

where

M(O) sup{Isin(0- )1 q: /} -< 1. (3 14)

But ’n- > 2/r for 0 < Iz _< n-/2, so that if for each i, j we choose k k(i,3) Z with

10 0 + kr[ < 7r/2 then we obtain
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H Isin(O, O;)l _> H io, o +

2e
(n-> r(n + 1)

z., (3 15)

so that

[fg’O(O)l <- b’M(O)n (n-

< b._e. 7rM(O)(n + 1)
(3 16)

Specializing the value of b, in (3 16) we obtain several extension theorems
THEOREM 2. If E satisfies the S C (e) then each f E XE,r can be extended to XE,t for each

{E whenever < er/Mre, where M sup M(O) 0 (S\E)

PROOF. If f X,,- then according to (3 3)

n!K
(3 17)I:g’><>l-< 7’

where K Ilfll, Thus for each 0 E R the series

n=0

is majorized by the series

which converges for s < er/Mrre i-I

THEOREM 3. If E satisfies the S C (e) then XE is isomorphic to XF for each F

_
E. If f XE

then the Taylor series

Okl +k2 kl z2k2E Oxkl Oyk f(O’ O) zl

k =0 k=0 kl k2

defines an entire function in C

PROOF. That XE is isomorphic to XF if F 2)E follows by letting r oo in the previous

theorem The convergence ofthe Taylor series

Okl +k kl

Z Z OxklOyk2 f(O, O) Z1 z2

k =0 k2=0 kl k2

for each (Zl, z2) C with IZll < r, Iz2l < r is equivalent to the convergence of the series

k!
z

k=0

for each Izl < r and each 0 E , so that the Taylor series indeed defines an entire nction in C

A paicularly usel result along these lines is the follong
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COROLLARY. Let f be real analytic in 2 If f E XF for some E that satisfies the S C then f
extends to an entire function in C and its Taylor series converges to f in all ]R !-1

We say that an entire function of n variables F(zl,...,z,,) is of exponential order if there are

constants K and A such that

]F(zl, Zn)] <_ Kea(Izl+ +iz,l) (3 18)

for each (Zl, z,) E C In that case we say that F is of exponential order A
TIIEOREM 4. Let f(z, t) be real analytic in ]R Let f E Xz, where E satisfies the S C (e) If

fo (z) f(z cos 0, z sin 0) is of uniform exponential order in E in the sense that

[fo(z)] < KeAlzl, zEC, 0, (3 19)

then f extends to an entire function of exponential order in C

PROOF. If fo(z) satisfies (3 19) then it follows by Cauchy estimates that

If’)(O)l<Kn’(me’) 0. (320,

Ifwe now use (3 16) we obtain the bound

Up to now we have suppose 0 real, but as should be clear (3 21) also holds in 0 C If 0 ]R then

[M(0)I < 1, an inequality that has to be replaced by

IM(0)I < [cos0[ + Isin01 (3 22)

if0C

It follows that if z w cos 0, z2 w sin 0 for some w, 0 E C then

1 AreM(O)lw] KeeAeM(O)lwle-If(zl,z2)l --Ifo(w)l < KeZ . , < (3 23)

or

If(za,)l Kea+(Ae/’)(lzl+l21) (3 24)

Not every pair (Zl,Z2)C admits the representation Zl =-wcos0, z =wsin0 the extra

condition z + z - 0 has to be satisfied However, the set {(za,z) zx + z 0} is dense in C, so

that by continuity (3.24) holds in all C
S.

1) Notice that our deflation of Xz. requires f to have a smooth eension to a neighborhood of
the origin. A nction like f(z, ) (z + )2 (z + 22)-1 shows that our theorems do not hold if
condition (a) is oued in the deflation ofX,

2) A nction like

exp(x 2)- X2 < 2f(X,y)
0 X2 y

shows that Theorem 4 is false if f is not required to be real analic but just smooth

4. APPLICATION TO DONTNSFOS
In this section we show that our results have application in the suppo theorems for Radon

transforms
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If f is a function defined in Rn, integrable over every hyperplane, then its Radon transform is defined

as

f(w, t) f(x)d#(x), (4 I)
oW t

for (w, t) E S R, where d# is the Lebesgue measure on the hyperplane x- w

Clearly, if f has compact suppo contained in the closed ball B(0, A) then the suppo of its Radon

transform is contained in s- x I-A, A] The converse is not te in general [6,11], unless f
satisfies some additional conditions For instance, the suppo theorem of Helgason [4,5,8] says that if f
is continuous and rapidly decreasing (i e f(x) 0(ll k) as I ) then the suppo of is contained

in -1 [_ A,A] if and only if the suppo of f is contained in B(0, A) In [10], Wiegerlnck
introduced a simple but powerl method for the study of suppo theorems As we show, the use of this

method and of our results of the previous sections allow us to obtain interesting suppo results for the

Radon transform

Instead of requiting f to be rapidly decreasing in the ordina sense, it would be enough to ask f to

be dstnbutonally small in the sense that it satisfies the moment asymptotic expansion [2,3

k A[k[+n as A ; k (f(x),xk) (42)
Ik[ =0

For our purposes, it would be convenient to take f O The space Oc (see [7,9]) is defined as

the space of smooth nctions (x) defined in that satis Dk(x) 0(Ix[) as [x[ for each

k and some q The space M is defined silarly but now Dk(x) 0(Ixl<k) for some q(k)

that may va with k The Fourier transform interchanges these spaces f(O) , f(O) Oc
Eve element of O is distributionally small [2,3] so obsee that if f E O then its Fourier

transform {f(x), u} (f(x), e*x’u) can be obtained by evaluation at e’u, not just duality
THEOM 5. Let f be a continuous nction in that satisfies three conditions

(a) f E O
(b) Its don transfo satisfies the estimate

[?(w,t)[ Cwe-’wltl, ew>0, (w,t) ESx. (43)

(c) There is a set E C_ S that satisfies the S C (e) and a number R > 0 such that

f(w,t) 0, w E E, Itl > R. (44)

Then f has compact support contained in the disc B(0, RTre/e)
PROOF. If f (9, then its Fourier transform F ’(f) belongs to OM, SO that F is smooth in

If Iwl- 1, the values of F along the line sw, s JR, can be expressed in terms of the Radon]1

transform as

F(sw) I(x)eSW’Xdx I(w, t)e-’dt. (4 5)

The condition (b) guarantees that F(s) can be extended to strip {s C :Ims < e} so that, in

paicular, F(s) is real analic in s en E then (4 4) shows that F(s) extends to an entire

nction of exponential order R

If(w)l Ke1"1, s C, w E. (4 6)

Using Theorem 4 it follows the Taylor series
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0 1 Ok’+k2F(O, O) z!1 -o- -ff-cu (4 7)

defines an entire function of exponential order RTre/e in C But since F is smooth near the origin and

since F(sw) is real analytic in s, it follows that the Taylor series converges to F in .o Thus F extends

to an entire function of exponential order Rrce/e Since F E OM, the Paley-Wiener theory shows that

f .T’-IF is a distribution with compact support in the disc B(0, RTre/e) D
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