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i. Introduction.

We consider the problem of finding solutions ueL2(R I) L2(R) to

the Hammerstein integral equation

u(t) K(s,t)g(u(s),s)ds,

where R is a bounded region in lq, K(s,t) K(t,s) e L2(RxR), and

g: I / is a continuous function. We let KI: L2() / L2() be the

operator defined by K! (u)(t) / K(s,t)u(s)ds. We denote by {i}ieZ and

{i}ieZ the sequences of eigenvalues and corresponding eigenfunctions of

u AK (u) (1.2)

The equation (i.i) was discussed by Dolph in [2 ] and the following
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results were obtained. If KI is positive definite the problem of finding

the solutions of (i.i) can be reduced to the problem of finding the criti-

cal points of certain functional J defined on L2(). Moreover, if: there

exist two consecutive eigenvalues of (1.2), and AN+I, and real num-

bers , y’ and C such that

(g(u,x) g(v,x))/(u-v) <_ 7’ < AN+1 for all (u,x)eR n

u
2G(u,x) /O g(s,x)ds >_ (7/2)u + C for all (u,x) R x

with > AN; and for every in X span {ilAi <_ AN
} J has a unique

minimum on the linear manifold + Xx; then (i.i) has a solution.

Here we prove that even in the case that K is indefinite the pro-

blem of finding the solutions of (i.i) can be reduced to the study of the

critical points of certain functional defined on L2(). We show that (1.3)

alone implies the existence of a solution of (I.I). We also apply a re-

sult on Liusternik-Schnierelmann theory due to Clark [ 2,p.71] to the study

of (i.i) when g is odd in the first variable, mildly nonlinear and again

not necessari{y positive definite.

In [5,ch.Vl] and 6,ch.V] the equation (I.I) is studied when (1.2)

has a finite number of negative eigenvalues. For a historical account con-

cerning (i.I) see [3].

2. A Max-min Princip!9.

Throughout this section H is a real separable Hilbert space, with

inner product <,>, and f: H /I is a function of class C For each

u E H we denote by Vf(u) the unique element of H such that
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lira f(u+tv) f(u) <Vf(u),v ’for veil.
tO t

If Vf is differentiable we denote by D2f(u) the differential of Vf at

u. If {x } is a sequence in a Hilbert space which converges to some element
n

x we denote x / x, if {x } converges weakly to x we denote x x.
n n 11

We say that a function is continuous with respect to weak convergence

(CWC) if it takes weakly convergent sequences into convergent sequences. We

say that a function w: H / l is weakly lower semicontinuous (WLSC) if

x / x implies w(x) < lira W(Xn).n

Lemma 2.1. Suppose there exist X and Y, which are closed subspaces of

H, such that H XY and for some m > 0

<Vf(x+y1) Vf(x+Y2),yl-Y2> >_ m[[y x-y2[[ 2

for ever7 x e X, Yl e Y’ and Y2 Y"

Assertion: There exists a continuous function : X / Y satisfying:

i) f(x+(x)) rain (x+y)
yeY

ii) The function : X /l, x / f(x+(x)) is of class CI

iii) l__f, i__n addition, there exist an isomorphism A:H / H such that

A(X)=X, A(Y)CY, for some ml> 0 <A(y),y > > yll 2 o= an y, an__d

Vf A F i_s continuous with respect to weak convergen.ce (CWC),then

is CWC when either dim Y <= or X and Y are orthogonal.

Proof: For each xX we define fx: Y/l by fx(y) f(x+y). From (2.1)

we have <Vfx(Yl) Vfx(Y2)’Yl -Y2 "> > mll Yl-Y2 ][ 2. Thus, for each
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xEX f has a unique critical point (x) (see6,p.803). Moreover, f ((x))x X

min f (y) -,tin (f(x+y)). Therefore (x) is the only element of Y such
XyEY yEY

that

0 <Vf (%(x)),K>
X

<Vf(x+ (x)),K> for all KEY.

(2.2)

Let us see now that is continuous. Suppose, on the contrary, that there

exist 6 > 0 and a sequence {Xn}n in X such that x / xeX and
n

II (xn) (x)II > 6. Since Vf is continuous, for n sufficiently large..

I[ P*(Vf(xn+@(x))) II < 6m, (2.3)

where P: H / Y is defined by P(x+y) y, xEX, yEY, and P* is the ad-

joint of P

Because of (2.1) we obtain using Schwarz’s inequality

I] P*(Vf(Xn+b(Xn))) --P*(f(xn+(x)))[I > m[[ (x) (xn) [[ >_ m6. (2.4)

Since, by (2.2) P*(Vf(xn+(Xn))) 0, the inequality (2.4) contradicts (2.3).

Thus is continuous, and this proves part i).

For t>O and heX, we have.. (x+th) (,X) f (x+th+ (x+th)) f (xd (x))
t t

< (x+t.h.+, (x.)) f((x))

1
f<Vf(x+(h) + sth),h>ds
0

In a similar manner, we can see that

f(x+th) f(x) > <Vf (x+ (x+th)+sth, h>ds.
t 0
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Therefore, since Vf and are continuous we have

(_’th) (x)..,, <Vf (x+ (x)) h>
li
t- t

This shows that f has a continuous Gateaux derivative and hence is of class

C (see ,p.42]). From the above

<Vf(x),h> <Vf(x+(x)),h> for all heX. (2.6)

We prove now part iii). By (2.1) we have

(2.7)

Since <Vf(x+(x)),(x)> O, by Schwarz’s inequality we obtain

II vf (x> II >-- m II Cx> II (2.8)

By iii), Vf is bounded on bounded sets; hence (2.8) imp.lies that is

bounded on bounded sets. In particular, if {x } is a sequence in X such

that x then {(Xn)} is bounded. Let {(x
n

)} be a subsequence of
n

{(xn) } such that (Xn.)- ycY. Since F is CWC, F(xn.+(xn.)) /F(R+y).

Therefore, for any KeY

0 lim<A(Xn.) + A((Xn.)) + F(xn.+(xn.)), K>

<A(H) + A(y) + F(+y), K>.

Consequently, by the characterization (2.2), we have y (H). This

implies @(xn)(@). In particular, if dim Y < then (Xn)/ ();i.e.

is CC.

If dim Y + and X and Y orthogonal then by (2.2) and iii)

0 <A(xn) + A((Xn)) + F(x +(Xn)),(Xn)n
(2.9)
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<A((Xn) ) + F(Xn+(Xn)), (xn) #(R)>

Also, 0 <A(#(x)) + F(x+#(x+(x)), #(xn) -#(x)>. Thereore, subtracting

the last equation from (2.9) we obtain

<A((Xn)) A(@()),(xn) -()>

<F(x+(x)) F(Xn+(Xn) (xn) -(R)>.

Since Xn+(x_)-n +#()’ F(Xn+(Xn))/ F(x+()). This together with the fact

that is bounded on bounded sets and relation (2.10) imply that

<A(#(Xn)) A(#(R)),%(Xn)-(x)>/0 as n / But, according to iii)

ml[l (Xn) ()[J2:_< <A((Xn) ) A((x)),(Xn) -(x)>. This proves that

(xn) converges strongly to #(R). Therefore, is CWC and the lemma is

proved.

Now we are ready to prove our variational, principle.

Theorem 2.2.: Le___ f,X,Y,H and m be as in lemma 2.1. If, i__n addition., -f i_.

f<x) .s II xll x x,

then there exists u0H such .that

and

(2.11)

vf (u0) 0 (2. 2)

f(u0) max (rain f(x+y) (2.13)
xX "yEY )

Proof: Let and be as in lemma 2.1. We proved that is of class C!

and is continuous. Since -f(x) --f(x+(x)) >__-f(x) and f(x) /- as

]I xll / then

-f(x) / +=asll Xll / +’" (2.14)
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Therefore, since- f s NLSC, then there exists XoeX(see6,p.80]) such

that -(xO) rain -(x). Thus,

f(x0) max f(x) max rain f(x+y)
xeX xeX (yeY (2.15)

(o+ (xo) ).

Also, since is of class CI, for heX

<v (x0) ,h> 0

Therefore, if w h+keH XY, then

(2.16)

<Vf (xo+ (xQ) ) ,h+k>’=Vf (x0+ (x0)) ,h> + <Vf(x0+ (xO) ) ,k>. (2.17)

Because of (2.2), the second term of the right hand side of (2.17) is equal

to zero. Because of (2.6) and (2.16), the first term of the right hand side

of (2.17) is also equal to zero. Thus, if u
0 -x0+(Xo), we have Vf(u0) 0

and, by (2.15), f(uO) ax in f(x+y)
xeX (yeY

3. Ap___plications to Hammerstein Inuations.

Throughout this section is a bounded region in lq, K(s,t) K(t,s) e

L2( x ) and g: ]R x /I is a continuous function such that the Nemytsky

operators u() / g(u(),) and u() / 0g s,)ds are continuous with domain

in L2() and range contained in L2(). From the theory of linear operators

we know that KI:L2() - L2(), u(t) / fK(s,t)u(s)ds is a compact operator.

We want to consider the problem

u(t) Kl(g(u(t),t)) ten. (3.1)

Let {Ai; i _+i, +2,... } be the sequence of eigenvalues of u AKI(U). Let

{i}i be an orthonormal sequence of eigenfuctions corresponding to the se-

quence of eigenvalues {A.}.. We assume that A-2 < X-I < 0 < XI < 2"’"
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and that the {i}i form complete set in L2(). Let X span{_l,_2,... }

and Y span{l,2,...}. It follows that KI(X)CX and (Y) cY, and Y is the

orthogonal complement of X. reover, K1 restricted to Y is positive defi-

nite and KI restricted to X is negative definite.

The completeness of {@i }i implies that for any ueL2(G)

-1 i i"-.z y<u,,j>,.+z ,j
3"" J 3 j=l "’J

<u’

where <, > is the usual inner product in L2().
-i 1Now we define the operators Q’QI: L2 () by Q(u) E../,A. <u,j>j and

iQl(U) r._7_ <u, @q >@j. It is eily seen that Q and Q1 are compact linear
j=

operators. Suppose u y with xeX, yeY,
-1 1Q(Q(u)) Q( z LA. <u,j>)j (3.2)

j=-

-i iz j >Q(j)=-(R)
_. <u,

r. _-’. <x, j>j

-K (x).
i

Similary

QI (Ql(U)) Kl(y). (3.3)

That is, QI is a square root of KI on Y and Q a square root of -KI on

X. From the definition of Q and QI it is easy to see that Q and QI are

selfadjoint.

Next we reduce the problem (3.1) to an operator equation envolving Q
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and QI" Let P: L2(fl)/ L2(fl) be the orthogonal projection onto X and

PI" I P. Clearly PQ Q and PQI O. we denote (u)(t) g(u(t),t),

for u L2(fl).

Lemma 3.1.: Th___e problem (3.1) has a solution iff the. problem

-x()+y() qCCCy) + qCx))()) + q((q(y) + q(x))()) (3.4)

has a solution (x,y) XxY.

Proof: Let u x+y, xcX, yY satisfy (3.1); therefore x P(u) P(KI((u)))
KI(P((u))) -Q2(P((u))). Thus, there exists X such that Q() x.

A similar argument shows the existence of Y such that y QI(). There-

fore,

Q() x Q(-Q((Q() + Q1()) ) )" (3.5)

Since 0 is not an eisenvalue of Q restricted to X and -Q((Q()+QI()))
belongs to X, we have

-Q((Q() / Q1(9)))" (3.6)

A parallel argument shos that

Q1 ((Q() + Q1 ()) )" (3.7)

Subtracting (3.6) from (3.7) we obtain

-+ Q((Q() + Q1())) + QI(i(Q() + QI()))
so (3.4) has a solution. This proves the necessity of (3.4).

Conversely, suppose (x,y)eXY satisfies (3.4). Let us call

u QI(y) + Q(x). Applying Q and QI to (3.4) we obtain respectively

Q(x) -Q2((u)) Kl(P((u))
QI (y) K1 (PI ( (u)).

Adding the last two equations we get

u Kl(P((u)) + Kl(Pl((u)))) Kl((u))-
Therefore (3.1) has a solution, and the lemma is proved.

(3.8)

(3.9)
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Theorem 3.2. Le___!t g: R / R be _a continuous function. If there exist

real numbers y, y’ and C such that for some integer N

a) AN< 7 --< ’ < AN+l, if N=-I we let l-i < 7 --< ’ < Ii
b) For ue]R, ve, te (g(u,t)-g(v,t))/(u-v) _< y’

and

c) For ue, te G(u,t) o g(s,t)ds (y/2)u2 C

then the proble (3.1) has at least one solution.

Proof: We define J:L2() + ]R by

J(u) ((PlU)2/2) ((pu)2/2) (Q(P(u)) + QI(P(u))),
where (u) (t) G(u(t),t). Conditions b) and c) imply the existence of

constants A,B > 0 such that

Ig(s,t) l<_A + BIs and G(s,t) _< A + Blsl 2 (3.10)

for any (s,t)el x. Therefore, J is a functional of class C I. An ele-

mentary computation shows that if ueL2(), u x+y, xeX, yeY then

<VJ(u) Xl> f-x.xI (Q(x) + Ql(y))Q(xl) for XlX (3.11)

and

<VJ(u)’Yl> ]YYl g(Q(x) + Ql(y))Ql(Yl for yleY. (3.12)

From (3.11) and (3.12) we see that ueL2() is a critical point of J

iff (PU,Pl(U)) is a solution of (3.4). Thus, by lemma 3.1, J has a

critical point iff (3.1) has a solution.

Let us prove that J has at least one critical point. First we as-

sume N -i. Let xeX, yeY, and yleY; so, by condition b), we have

<VJ(x+yI) VJ(x+y),yl-y> (yl-y) 2 T’ (QI(Yl-y)) 2. (3.13)

Using Parseval’s formula and the definition of QI we infer

<VJCx+yI) JCx+y),Yl-Y> -> (I-(y’I%I))I1Yl-YI[ 2

where, by a), (l-(y’/%l) ) > 0.

(3.14)

From (3.11) and (3.12) we see that
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VJ(u) P(VJ(u)) + PI(VJ(u)) (3.15)

-P(u) Q((Q(u)l(u))) + Pl(U) QI((Q(u)QI(U)))"
I relaiona (3.14) and (3.15) mply tha X,Y,J and (i-(’/I)) atisfy

th conditiona of i 2.1. Conaequently, there .iata a C function

:X + such that a(x(x)) rain J(x+y).
yy

Since -(x) -J (x-l- (x)) can be wtten as

-3(x) ((1/2)ynx2) [ yn(((x))2/2) + ,(Q(x) + QI((x)))], (3.16)

since the function x / (I/2)Ix is convex, and since the expression in

the bracketed integral is CWC, - is WLSC. Therefore, by theorem 2.2, J

h. =ii= poi. if J(x) /-(R) . llx II + "- L us v=iy hi on-

dition. Since

J(x) /R{-(x2()/2) G(Q(x()),)}d,

it follows from c) that

J(x) <-/fl{(x2()/2) + (y/2)(Q(x())) 2- C}d. (3.17)

From (3.17) we see that J(x) /-- as [Ix II / when y > 0. If y < 0,

then by Parseval’s formula we have -(y/2)/Q2(x())d < (y/%l)/x2()d.
Substituting this in (3.17) we have

J(x) < (1/2) (-l+(y/A I)) II x II 2 + Cmeas(fl).

Therefore, J(x) /- as llx II - m- So (3.1) has a solution.

Suppose now N -i. Let be a real number such that < < y.

Thus, AN-O < 0 and AN+I-0 > 0. Let

-I--. (j (s)Oj (t)) (;kj-i)K2(s,t) ---"
Therefore, the eigenvalues of the problem

u(t) XK(s,t)u(s)ds (3.18)

are {Aj-0 j=_,
where 1.3 is as before. The greatest negative eigenvalue

of (3.18) is AN-0 and the smallest positive eigenvalue of (3.18) is
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%N+I-O. Consequently, by the reasoning for the case N -i, if

fl(u’) g(u,) pu, then there exists u0L2() such that

u0(t) 2(s,t)(g(u0(s),s) Pu0(s))ds.
An elementary computation shows that u

0
is a solution of (3.1). And

the theorem is proved.

Remark: If we change (b) and (c) by

(b’) For u, v, t, (g(u, t)-g(b, t))/(u-v) _>

and

(c’) For u, tE, G(u,t) og(S,t)ds (y’u2)/2 C,

respectively, then (3.1) has at least one solution. This comes from

applying theorem 3.3 to u(t) _(-K(s,t))(-g(u(s),s))ds.

From here on we consider the equation (3.1) assuming g(u,t) g(u)

-g(-u). In our next theorem we make use of the following result which is

specialization of a theorem due to Clark [ l,p.71].

Lemma 3.3.: Le___t H be a real Hilbert sce and f an even, real valued C2

function defined o._.n H. Suppose that f has the property that

whenever {x } = H is a bounded sequence such that f(xn) > 0 and f(Xn) / 0,
n

then {x } contains a convergent subsequ.e.nce. Suppose that f(0) 0, f is boun-

ded above, there exists a subspace M o__f H o_f dimension > 0 such that

<D2f(0)h,h> > 0 i__f hM with h + 0, an__d f(x) > 0 fo___/_r [ix II sufficiently

Then there exist at least 2 + i solutions of Vf(x) O.

Theorem 3.4. Suppose g is a function of class C an__d g’ i_s bounded, i_f there

exist two integers N and r,N < r, such that:

i’) there exists a real number 7 with g’ (u) _< 7 < for all ue]R,
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ii’) IN < g’(0) < IN+l’
iii’) there exists real numbers y’ and C, y’ > %r-i such that

G(u) og(s)ds >_ (y’/2)u2 + C,

then the equation (3.1) has at least 2(r-N) + 1 solutions.

Proof: As shown in theorem 3.2 it is sufficient to prove that J has at least

2(r-N) + i critical points. Also, arguing as in the previous theorem, we can

assume r i and i --i" If X and Y are as in lemma 3.1 then condition

i’) implies that for xeX, yeY, and yleY, we have

<Vj(x+Yl) Vj(x+y),yl_y> _> (l_(Y/%l)) [lyl_l 2. (3.20)

So by (3.15) and lemma 2.1 there is a CWC function :X + Y such that for each

xeX

J(x+(x)) min J(x+y) (x).
ysY

C
I

Since g is of class and g is bounded it follows that J is of class C2

Hence, following a reasoning based on the implicit function theorem, as in

[4,theorem i], it can be seen that is of class C and is of class C2.

Moreover, for xeX, heX we have

<D2O(x)h,h> <DZI(x+(x)) (h+’ (x)h),h>. (3.21)

Now we show that 3’ satisfy the hypothesis of lemma 3.3. Because is even

is odd. So is even, and (0) 0. Thus, from (3.21) we obtain

<D2j(0) h, h> l-h2 g’(0)(Q(h)) 2 (3.22)

for heX. From (3.22) and ii’) it is easy to see that D2j is positive definite

in a subspace of dimension (r-N), namely span{_l,_2,...,N+l}. From iii’)

and the definition of we have

3(x) _< J(x) (3.23)

< /-x2 (y’/2)(Q(x))2 + C.

Thus, since y’ > l-i and i -< --i we infer that is bounded above and

3(x) /- as llx II - . Let .{x is a bounded sequence in X such that
n
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Vf(xn) / 0. By (2.6) and (3.15) we have

V(xn) -Xn Q(’(Q(Xn) + Ql((Xn) "+ O. (3.24)

Let {x } be a weakly convergent subsequence of {x }. In consequence, since
n. n

Q and are CWC hence the sequence {Q((Q(xn) + Ql(0(Xn) converges strong-

ly. Therefore, by (3.24) {Xn.} converges strongly. Thus, by le 3.3, J has

at least 2(r-N)+l critical points. Since by (2.2) and (2.6) every critical

point of J is of the form x+(x), where x is a critical point of ] the theorem

is proved.
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ABSTRACT. This paper deals with the problem of finding solutions of the

--._rstein integral equation. It is shown that this problem can be

reduced to the study of the critical points of certain functional defined

on L2(). Existence of a solution of the Hammersteln integral equation

is proved. Some other related results of interest are obtained.
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