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ABSTRACT. It is shown that if every bounded linear map from a C*-algebra 67

to a yon Neumann algebra is completely bounded, then either 67 is finite-

dimensional or ; @ Mn, where is a commutative von Neumann algebra

and M is the algebra of n n complex matrlces.n

Let 67, be C*-algebras, and let : 67 be a bounded linear map.

For every positive integer n, we define the map n to be n = (R) idn’
the entry-wise map from 67 (R) M to (R) M where M denotes the C*-algebran n n

of n g n complex matrices. We say that is comple.tely bounde if

IInll < m [i]. It is not a priori evident that there are bounded maps whichsup
n

fall to be completely bounded. It follows from the results of this paper that

there are almost always such maps.
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Let us denote by BI[2 ] the set of all bounded maps from d to ,
and by B[7, ] the set of all completely bounded maps from 7 to . We

shall describe some of the structure of B[7 ] below. Further, in a

previous paper 3], we made the following Conjectures:

(I) If BI[, 1 B[, ] for all d, then B (R) Mn for some

conmutatlve C*-algebra and integer n

(2) If BliP7, ] B[2, ], then either 2 is finite-dimenslonal or

S c ,.(R) Mn
We shall give an affirmative answer to both these conjectures under the

hypothesis that is a yon Neumann algebra . We should remark that the

converses to (1) and (2) hold; i.e., if 7 is flnite-dlmenslonal or

@ n’ then Bl[, ] B[, ] (see below).

Although our proof depends heavily on the hypothesis that the range is

avon Neumann algebra, we feel that this is merely a shortcoming of our proof,

and not a true reflection of the facts.

We begin with what is, to the best of our knowledge, the only example in

the literature of a bounded mapat is not completely bounded.

THEOREM I: Let X be an infinite compact Hausdorff space. Then there

is a bounded map : C(X) n M2n such that is not completely bounded.

Further, if C(X) c d where d is a C*-algebra, then has an extension

PROOF: The proof of the first assertion can be found in [4, Lemma 2.1

and Theorem 2.2], and the second assertion follows from the construction used

to produce . We will sketch the highlights of the construction, both for

the convenience of the reader and for later reference.

Let C(X). For every integer n, there exist elements AI,...,An E M n
2

such that: (I) Ai Ai*; (2) AiAj + AjAi 25ijI n; and (3) Tr(Ai) 0.
2
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(n) (n) be positive linear functionals on with disjoint closedLet P i
n

n) (n) n) 2
supports and let %0

(n) (f) i__l p (f)Ai. Then I II 2 4 [[p II SO

14that if n)ll n
3/4 for all i, II(n)II 2 n" We now remark hat

by Krein’s Theorem [5, p. 227], the pn) have norm-preserving positive

extensions to 67 , and the extension assertion rests on our demonstrating

that the IlPn)ll are the keys to computing sp
It is true that for a positive linear functional

n
[I, Prop. 1.2.10]. Thus, sp llk(n)ll i=l llpi(n)ll-nI/4. But in fact,

Let --n ""n) where all the functionals p-i(n) are chosen to have dis-

joint closed supports, which is possible since X is infinite. Then

II,II-- ,Np I < >II SUPn n" =r2. But n, II > SnUP ][q2n II-
sup n1/4 +, and thus fails to be completely bounded.
n

COROLLARY 2 If / is an infinite dimensional Hilbert space, and X

is an infinite compact Hausdorff space, there is a bounded map : C(X) ,
the algebra of all bounded operators on /, such that is not completely

bounded.

If 0:7 is a linear map of C*-algebras, we define the adjoint of

, , by *(A) =(A*)*. Then * is a linear map from 7 to , and

II*[I ’’II11" We say that is self-adJoint if -.*. Every map can

be written uniquely as I + i2’ where I’ 2 are self-adJoint.

PROPOSITION 3: Bm[7, ] is a self-adJoint linear subspace of BI[, ],

but Bm need not be norm-closed.

PROOF: It is elementary that for all k, I]kH I]1] and that the

sum or scalar multiples of completely bounded maps are completely bounded.

For the second assertion, let us re-examine the proof of Theorem i. Let
N

,(N) (n)
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so (N) . However sp II*(N)II (N)
I/4

k

bounded.

so each (n) is completely

We remark that if one defines lli llJ __l[ kll, he B.[, is closed
k

in III’III. We suspect that Bm[., 8] is always dense in BI[ ], at least in

the weak (i. e., pointwise) topology.

We also should remark that if 8 is a *-isomorphism of C*-algebras, then

ll0o@ll 1[8ooll llll and more generally, II(O@)kll ll(@O)kll llkll for all

integers k. Thus the classes Bl[d ] and Bm[, ] are essentially

unchanged under isomorphism; e.g., if Z -- % and -- i’ then Bm[6Z ] --B.[, ].
We will denote by Mm the algebra ), where is a separable

infinite-dimenslonal Hilbert space. By Corollary 2, Mm ) M n.n 2
We will now do an analysis of von Neumann algebras, based on their type,

that will identify the characteristics we need. We follow the type classlfi-

cation of [6, pp. 24-25].

LEMMA 4: Let be a von Neumann algebra of type !, II or III.

Then (an isomorphic copy of) M.
PROOF: By [6, Cor. 14], is spatially isomorphic to (R) M but

LEMMA 5: Let be a yon Neumann algebra of type II I. Then

(an isomorphic copy of))n M2n"
PROOF: Let {Pn]n=l be family of non-zero, orthogonal projections in

2n

[6, p. 45]. Foreach n, write P )En) where En)En) for
n i--1

i J, and En) is equivalent to En) in the usual sense of equivalence

for projections. Let [V)] be partial isometries (in Pn,Pn [p. 46, Remark])

-lj
E

-lJ -iJ
E so that we can take V )*
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Theft
2

n P-Pn-- n M2n"

Thus

LEMMA 6: Let e =%, where % iS a homogeneous yon Neumann algebra

of degree In I n < w. If sup n w, then D (an isomorphic copy

of) n M n.
2

PROOF: Each is (isomorphically> of the form % (R) Mn where %
is a commutative von Neumann algebra [6, p. 98], and thus 1 @ Mn-- Mn.

such that ni 2i, and thusIf sp n " there is a subsequence ni
M Then ai e M i.

We are now ready to prove the main result of this paper.

THEOREM 7. Let be a yon Neumann algebra, and suppose that for some

infinite compact Hausdorff space X, BI[ C(X), ] Bin[ C(X), ]. Then there is

a commutative C*-algebra and integer n such that u (R) M
n

PROOF: We can write as a (unique) direct sum I 2 ) 3 4
)5 where i is of type !m, 2 of type lira’ 3 of type III, 4 of

type III, and 5 of type In [6, p. 25]. By using Theorem i, Corollary 2,

Lemma 4, and Len.na 5, we see that the hypothesis forces i 2 3 4 0.

Thus 5 is of type I so , where , is homogeneous of

degree n [6, p. 42]. By applying Theorem I, Lenxna 6, and the hypothesis,

we see that sup n N < ". But then (C(X) @ Mn) ) (C(X) @ Mn)
C (R) , for an appropriate commutative C*-algebra .

We can now give our answer to the first conjecture.

COROLLARY 8: If is a yon Neumann.algebra, and for all C*-algebras

7, BI[7, ] Bm[7, ], then @ Mn.
For the sake of completeness, we state a converse to Theorem 7. The proof

may be found in [3, Lenna 7].
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PROPOSITION 9: If (R) Mn, then for all C*-algebras 6,

BI[, ] B[, ].

In order to present our answer to the second conjecture, we need the

following result.

PROPOSITION i0: Let be an infinlte-dlmenslonal C*-algebra. Then

C(X) for some infinite compact Hausdorff space X.

PROOF: This fact is established in the proof of [3, Thin. E], and is

a variation upon [2].

THEOREM ii: If is a von Neumann algebra, and for some C*-algebra

6, BI[ ] Bm[, ], then either is finite-dimensional or C (R) Mn.
PROOF: The proof of Theorem 7 shows that either = (R) M or

n

M n. Suppose the latter; then if is infinite-dimensional, we see
n 2

from Proposition i0 that C(X) for some infinite compact Hausdorff space

X. But then by Theorem i, there is a map , : M n , which is
n 2

bounded but not completely bounded. This contradicts the hypothesis, and

completes the proof.

For the sake of completeness, we state a result, which along with

Proposition 9, yields a converse to Theorem ii. The proof may be found in

3, Lemma 5].

PROPOSITION 12: If is finite-dimensional, then for all C*-algebras, Bi[, 1 BtdT, ].

We remark that, by Theorem ii, there are almost always bounded maps

between C*-algebras that fail to be completely bounded.

We should mention that there is another interesting consequence of the

methods of this paper.

THEOREM 13. Let be an infinite-dimensional C*-algebra Then there

is a bounded self-adjoint map q0. M n such that cannot be written
n 2

+ /- where are bounded positive linear maps from ).
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PROOF: The actual assertion of [4, Lemna 2.1 and Theorem 2.2] is that

the map : C(X) M n described in the proof of Theorem 1 does not admit
n 2

such a decomposition. The extension statement in Theorem i and Proposition i0

allow us to pass to an arbitrary infinite-dimensional .
Arguments simila to those of Lemnas 4, 5, 6 and Theorem 7 in this paper

were used in the dissertation of Sze-Kai Jack Tsui, University of Pennsylvania,

1975. He also obtained results relating to Theorem 13 of this paper.
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