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ABSTRACT. In this paper we obtain the general solution of scalar, first-order

differential equations. The method is variation of parameters with asymptotic

series and the theory of partial differential equations.

The result gives us a form like a differential quotient requiring only

that a limit be taken. Like the familiar expression for the solution of linear,

first order, ordinary equations, it is the same in all cases.
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i. INTRODUCTION.

We present a unified treatment for the general scalar, first-order, ordinary

differential equation

C
Iy’ G(x,y) G e
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Particular examples are linear equations, Riccati equations and Abel

equations.

2. PRELIMINARIES.

We begin with the differential system

IVI’ f(VI,V2) VIV2
V2’ h(VI,V2) V

1
V
2

v#0

with general solution VI Vl(x,cI,c2), V
2

V2(x,cl,c2). Here Cl,C2 are

arbitrary constants.

(2.1)

Now let x x(t). Then we get

i UI ddt
V
2 U21

U
1 f(Vl,V2) U

2 h(Vl,V2)
(2.2)

We are now ready to present the algebraic system referred to in the title.

3. THE CAUCHY-KOWALEWSKI SYSTEM.

Let wI Wl(t,e) w2 w2(t,e) be two functions of t and e (at present

unknown).

The functions VI,V2 have been given by (2.1). Finally two more unknown

functions K(Wl,W2,t,e) and L(Wl,W2,t,e) will be defined by partial differ-

ential equations later. They will contain another variable, %. It will be

possible to substitute an arbitrary G(Wl,t) for % to solve specific equations.
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DEFINITION. The system of algebraic equations

(a) wI K(Wl,W2,t,e)VI 0

(b) w L(Wl,W2,t,e V2 0

(c) x wI + tw2.

Wl#0

is called the Cauchy-Kowalewski system, for a specific G(Wl,t). Using % we

will get a universal system.

Under suitable conditions on the functions K and L, we can solve it for

wI Wl(t,e) and w
2 w2(t,e). We proceed by defining these functions as

solutions of appropriate partial differential equations. We will derive

these functions L(Wl,W2,t,e,% and K(Wl,W2,t,e,% and regard them as fixed

like universal constants.

4. THE FIRS FUNCTION K IN THE CAUCHY-KOWALEWSKI SYSTEM.

We differentiate 3(a-b) with respect to t to get expressions for i’2"
Denoting the expression for 1 by R we get-- R (4.)

To simplify notation, let K e in (4.1) and get

AIL2 + A2L3 + A
3i R

_A2LI + A4L2 + A5
(4.1a)

Some of the Ai, i i,...,5 are given explicitly later. These are not partial

derivatives. By contrast

LLI w-- etc.

Now let . L- w and note that from (2.1), 3(a-b) we have f

h + z in the new notation.
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The following equation is of fundamental importance. We arbitrarily set

A2 2WlW2eI withaI + Wl3 + tf2 e (4.2)

where K a (L,Wl,W2,t,e) and eI -,etc., for real e > 0.

By the Cauchy-Kowalewski theorem [See e.g. (2.1)] let eo ao(L’wl,w2,t,e)
be an analytic solution of (4.2). Further, we will write

A
i

Ai(ao), i 1,2,3,4,5.

Let o n=0l Cne where Cn Cn(L,w1,w2,t) are analytic. Before imposing

conditions on c we give the following definitions.
O

w1DEFINITION. L [(---+ z)(wlo4 wlW2ao2 + w2o) Si(L,wi,w2,t

o )re of the A
i
will now be given explicitly.

w
1

(--+ z)(Wleo4 WlW2So2 + W2ao)
O

A
4 Wlmo2 + a2f m Wlhmo o 1

DEFINITION. L AI A.
-0

DEFINITION. L (-- G(wl,t)A--4) S2(L,wl,w2,t).

The conditions on c can be stated now as follows:
O

(z) = /o
0

(2) SI(L,wl,w2,t) $ 0, (3) a#o.

Substituting 7. c in (4.2) we get
o n=0 n

w
1

2WlW2Col- Wlt(--+ Z)Col + WlC03 + tWlZCo
O

--0 (4.3)
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of which some solutions are given

IH[8(Co,Z,Wl),W2 + P(Co,Wl,8(Co,Z,Wl)) constant (4.3a)

where

(i) H is arbitrary

(2) 8 satisfies the partial differential equation

wI
CoZSl + (-- + z)82 0

O

(wi83 + Co81 0)

(3) P is defined as follows: first solve 8(Co,Wl,Z)_ a

for z Q(Co,wl,a). Then set

d c

CoQ (Co,wl,a)

THEOREM i. The function H can be chosen analytic in (4.3a) so that

conditions (2.1), (2.2), (3.1) hold for c
O

iPROOF. Let y w
2 + P and then (4.3a) becomes H(B,y) constant. The

partial derivatives of c are computed from (4.3a) and from them we see that
oc

OH + 0 implies that -i--on + 0, so condition (2.i) holds. Further, A
+0L-AI 0

implies ( + w2)H 0. So H + 0 implies A + 0. Thus (2.1) (2.2) hold if
Y Y

merely Hy 0. Now S
1

0 implies that tw2(wlB3 + CoBl)H8 + H 0. Since

w183 + Col 0, we can choose H so that S
l

0. This completes the proof.

Summarizing the results of this section, K e e can be defined as the
O

solution of (4.2) where H is analytic c 0 S
1

0 and A 0 To solve
O

(3.1) however, we must define L.

5. SOLUTION OF THE CAUCHY-KOWALEWSKI SYSTEM.

To solve the system (3.1), we must now define the function L(Wl,W2,t,e).
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by

Setting G, o and A
2

, (4.2) in (4.1a) suggests defining L

GL
1
+ ( GA4)L2 + eL3 GA5 A3.

LLI 8wI
etc. This does not seem to be feasible. Instead, letting tend

to zero leads to

8L GA5 A3
(5.)L2 8w

2 A--I GA--
4

This will be used to define L.

Let be a new variable and consider

XA5 A
3

L2=_ (5.2)

Note that the right side of (5.2) is analytic where wI # 0 and- A4 # 0. So let L L(Wl,W2,t,e,) Pl(W2) + P2(Wl,W2,t,e,) be an

analytic solution on (5.2) and assume that none of the expressions A $1’ c
o

vanish when L Pl(w2 )"

Now since the value of -2(’(Wl,W2,t,e,)t) for )t G(Wl,t) is the same as

w2 ((Wl,W2,t,e,G(wl,t)) we see that L(wl,w2,t,e) L(wl,w2,t,,G(w1,t)) is a

solution of (5.1) for any G. Moreover L e CI since G is continuous and L

is analytic. Let K
G s (L,Wl,W2,t) and L L.

We now prove the solvability near suitable points of the Cauchy-Kowalewski

system. The variable gives our functions the universal character referred

to previously.

LEMMA I. Let (a,b,c) be such that Sl(Pl(b)a,b,c) # 0. Then, for small t,

the Jacobian of (3.1) is nonzero at (a,b,c,e).
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PROOF. If the Jacobian of (3.1) 0, then

-A2LI + A4L2 + A5 0

The subsidiary equations of (5.3) are:

dwl dw2 dL

-A
2

A
4

-A
5

dL -As
so that

dw2 A--4

But from (5.1), dL GAs A3

Thus AIA5 A3A4 0.

But AIA5 A3A4 (Wlao4 WlW2ao2
w
1+ w2so)(-- + z). So
o

w
1L (WlUo4 WlW2ao2 + w2uo) (L--- + z) 0. However

E+0 o

wIL (WlUo4 WlW2Uo2 + W2Uo) (-- + z) Sl(Pl(W2)’Wl’W2’t) # 0 and the
e-0 o

proof is complete.

We next consider continuity in order to apply the implicit function

theorem to (3.1). We first observe that L A
1 # 0. If L A4 0, then

Now consider the case where L A4 # 0, but L GA4) 0.

LEMMA II. There is at most one function G such that L
-I
( GA4) 0.

PROOF. L(Wl’W2’t’e) L(Wl’W2’t’G(Wl’t)) Pl(W2) + eP2(Wl’W2’t’e’G(Wl’t))
So it and its partials with respect to Wl,W2,t do not contain G as 0. Since

Z c (L,wI t) co(L t) + Cl(L wI t) + c2(L,Wl,W2 t)e 2 +n n=0 n ’w2’ ’Wl’W2’ ’w2’
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the same holds for it.

Thus L AI and L A
4

are independent of G.
e0 eO

So G
eAl
0A4

This completes the proof.

In the sequel, we ignore this possible exception and assume that

L (A--I GA--4) , 0 for any G.

LEMMA III. If (a,b,c) is such that S2(Pl(b),a,b,c) 0, there is an

e > 0 such that the left sides of (3.1) are CI at (a,b,c,e).

PROOF. Based on analytic properties of VI,V2,L,KG and the nonvanishing

of $2, we will not give details.

Choosing constant values for Wl,W2 in (3.1), we can get Cl(e),c2(e) so

that left sides vanishes and apply the implicit function theorem to (3.1).

Then we solve for Wl(t,e) and w2(t,e). Here Cl,C2 come from equation (2.1)

of section 2.

6. THE PRINCIPAL DIFFERENTIAL EUATION.
We now consider the differential equation

dx Y g(x,y) (6.1)

DEFINITION Wl(t) L wl(t,e).

It will be shown that Wl(t) satisfies (6.1). Of course we change y,x

to W"1, t respectively.

We begin this process wlth

d
THEOREM II. Let S 0 at l,W--2,t--). Then wl(t ) Gl,t-6) as / 0.

1

PROOF. L Pl(W2) + P2(Wl,W2,t,G(Wl,t)) so that --i / 0 as + 0

and also / 0 as e / O. Thus L1,L3 / 0 as -- 0.
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Also A4L2 + A
5

AIA5 A3A4 SI
AI GA

4
AI GA

4

Thus R AIL2 + A2L3 + A
3

L
3 + AIL2 + A

3

-A2L1 + A4L2 + A
5

-eL
1
+ A4L2 + A

5

eL
3 + G(A4L2 + A5) (A1 GA4)L3 + GS1

So i + + +

GS1Therefore i / S-- as -> 0 and S
1 # 0. This completes the proof.

By the last theorem, L d

e->0 - wl(t’) G(wl(t,e),t) G( L wl(t,e),t)

G(Wl (t), t)

But also it is true [2: P.461] that

L Wl(t,e) Wl(t,e)) Wl’(t).

So WI (t) G(Wl(t),t)
7. PARTICITLAR AND GENERAL SOLUTIONS OF y’ G(x,y).

C
I

7 (a) PARTICULAR SOLUTIONS. Let J (Wl, t)

L* (wI w2 t) L(wI w2 t e,J(wI t)) and * ,w2 t)(wl,w2,t) no(L*,wI
Let Q be the set of points in (Wl,W2,t)-space where

(i) wI # 0 (2) Co # 0 (3) S
1 # 0 (4) S

2 # O.

Let Q be the projection of Q on the (Wl,t) plane.

The Universal Cauchy-Kowalewski System

DEFINITION. (Wl’W2’ t’ e’ ) o (L’Wl’W2, t)

DEFINITION. F
1

wI eVl(W1 + tw2,cl,C2).

(6.2)
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DEFINITION. F
2

=_ w
2 L(Wl,W2,t,e,% -V2(wI + tw2,cl,c2).

DEFINITION. The system

DEFINITION. F
3 =- AI J(wl,t)A4 with % replaced by J(wl,t).

FI 0

F
2

0 is also called the Universal

F#0
Cauchy-Kowalewski System.

We refer to it in the following

THEOREM III. Let P e Q. There is a region in which the solution through

P of i J(wl’t) is determined as follows:

(i) In FI,F2 replace % by J(Wl,t and Cl,C2 by suitable functions of .
(2) Equate the results in (2.1) to zero.

(3) Solve the resulting system for wl(t,) and w2(t,).
(4) Take the limit of wl(t, as e + 0.

PROOF. Let P (a,to)’ P E Q" Since Co(Pl (b)’a’b’to) # 0, there is an

such that *(a,b,toE) # 0. Let (VL,V-2) be a solution of (2.1) such that

Vl(a + tob) *(a b,t ,)o

2(a + tob) b2 L*(a,b,to,e).i
Solve the syst era:

(1)

(2)

aVl(a + tob’Cl’C2) e(a b t e) 0
o’

V2(a + tob,CI,c2) b2 + L*(a,b,to,) 0

to get suitable cI Cl(), c2 c2().

Since S
I # 0 our system has nonzero Jacobian. We solve for wl(t,e) and

get the result.
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7(b) GENERAL SOLUTIONS. Alternatively, eliminating w
2

from the Universal

Cauchy-Kowalewski System we get

X(Wl,t,e,,Cl,C2) 0

where cl,c2 are constants.

The general solution of a specific equation is obtained as follows:

(I) Replace by G(Wl,t ) in (7.1).

(2) Take the limit as e + 0 of the result.

X is derived from L and K and is like the familiar differential quotient in

(7.1)

generality.
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