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1. Introduction and preliminary. Let P be a finite bounded poset of cardi-

nality greater than one. We can define some maps on the lattice of all antichains

A(P) of the poset P that naturally extend the set-theoretic blocker, deletion,

and contraction maps on clutters; such maps were considered in [4, 5].

A set H is called a blocking set for a nonempty family � = {G1, . . . ,Gm} of

nonempty subsets of a finite set if, for each k∈ {1, . . . ,m}, it holds |H∩Gk|> 0.

The family of all inclusionwise minimal blocking sets for � is called the blocker

of �. We denote the blocker of � by �(�).
A family of subsets of a finite ground set S is called a clutter or a Sperner

family if no set from that family contains another. The empty clutter ∅ con-

taining no subsets of S and the clutter {0̂} whose unique set is the empty

subset 0̂ of S are called the trivial clutters on S. The set-theoretic blocker map

reflects a nontrivial clutter to its blocker, and that map reflects a trivial clutter

to the other trivial clutter: �(∅)= {0̂} and �({0̂})=∅.

Let X ⊆ S and |X| > 0. The set-theoretic deletion (\X) and contraction (/X)
maps are defined in the following way: if � is a nontrivial clutter on S, then

the deletion �\X is the family {G ∈ � : |G∩X| = 0} and the contraction �/X is

the family of all inclusionwise minimal sets from the family {G−X : G ∈ �}.
The deletion and contraction for the trivial clutters coincide with the clutters

∅\X = ∅/X = ∅ and {0̂}\X = {0̂}/X = {0̂}. The maps (\0̂) and (/0̂) are the

identity map on clutters; for any clutter �, we by definition have �\0̂= �/0̂= �.

Let � be a clutter on the ground set S. Given a subset X ⊆ S, we have

�
(
�(�)

)= �, (1.1)

�(�)\X =�(�/X), �(�)/X =�(�\X). (1.2)
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Recall that the atoms of the poset P are the elements covering its least ele-

ment. Let X be a subset of the atom set Pa of P . (We denote the empty subset

of Pa by ∅a.) We use the denotation b : A(P) → A(P) for the order-theoretic

blocker map from [4], and we use the denotations (\X),(/X) : A(P)→ A(P) for

the order-theoretic operators of deletion and contraction from [5], respectively.

We do not recall those concepts here because the map b is the (∅a,0)-blocker

map from Definition 2.1 of the present paper and the maps (\X) and (/X)
are the (X,0)-deletion and (X,0)-contraction maps from Definition 3.1 of the

present paper, respectively.

For any antichain A of P , the following relations hold in A(P):

b
(
b
(
b(A)

))= b(A), (1.3)

b(A)\X ≤ b(A/X)≤ b(A)≤ b(A)/X ≤ b(A\X). (1.4)

Equality (1.3) from [4] goes back to (1.1) from [2, 3]. Comparison (1.4) from [5]

goes back to (1.2) from [6].

In the present paper, we consider families of the so-called (X,k)-blocker,

(X,k)-deletion, and (X,k)-contraction maps on A(P) parametrized by subsets

X ⊆ Pa and numbers k ∈ N, k < |Pa|. We show that for all pairs of the above-

mentioned parameters X and k, the essential properties of the maps remain

similar to those of the (∅a,0)-blocker, (X,0)-deletion, and (X,0)-contraction

maps on A(P) that were investigated in [4, 5]. In particular, we present ana-

logues of relations (1.3) and (1.4) in Proposition 2.6(ii) and Theorem 3.7.

We refer the reader to [7, Chapter 3] for basic information and terminology

in the theory of posets.

We use minQ to denote the set of all minimal elements of a poset Q. If Q
has a least element, then it is denoted 0̂Q; if Q has a greatest element, then it

is denoted 1̂Q.

Throughout the paper, P stands for a finite bounded poset of cardinality

greater than one, that is, P by definition has the least and greatest elements

that are distinct. We denote by I(A) and F(A) the order ideal and filter of P
generated by an antichain A, respectively.

All antichains of P compose a distributive lattice denoted A(P); in the pres-

ent paper, antichains are by definition partially ordered in the following way;

if A′,A′′ ∈ A(P), then we set

A′ ≤A′′ iff F
(
A′
)⊆ F

(
A′′
)
. (1.5)

We call the least and greatest elements 0̂A(P) and 1̂A(P) of A(P) the trivial an-

tichains of P because, in the context of the present paper, they are counterparts

of the trivial clutters. Here, 0̂A(P) is the empty antichain of P and 1̂A(P) the one-

element antichain {0̂P}. We denote by ∨ and ∧ the operations of join and meet
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in the lattice A(P); if A′,A′′ ∈ A(P), then

A′ ∨A′′ =min
(
A′ ∪A′′),

A′ ∧A′′ =min
(
F
(
A′
)∩F

(
A′′
))
.

(1.6)

2. (X,k)-blocker map. In this section, we consider a family of maps on an-

tichains of a finite bounded poset that extend the set-theoretic blocker map

on clutters. From now on, X is always a subset of Pa and k is a nonnegative

integer less than |Pa|.
Definition 2.1. The (X,k)-blocker map on A(P) is the map bXk : A(P) →

A(P),

A � �→min
{
b ∈ P :

∣∣I(b)∩I(a)∩(Pa−X)∣∣> k ∀a∈A} (2.1)

if A is nontrivial, and

0̂A(P) � �→ 1̂A(P), 1̂A(P) � �→ 0̂A(P). (2.2)

Given an antichain A ∈ A(P), the antichain bXk (A) is the (X,k)-blocker of A
in P .

We use the denotations bk and bX instead of the denotations b∅
a

k and bX0 ,

respectively. The (∅a,0)-blocker map is the blocker map b on A(P) considered

in [4]. Given A∈ A(P), the antichain b(A) is called the blocker of A in P .

If {a} is a one-element antichain of P , then we write bXk (a) instead of bXk ({a}).
Let a ≠ 0̂P . Since the blocker map on A(P) is antitone, for every E ⊆ b(a)−X,

we have {a} ≤ b(b(a))≤ b(b(a)−X)≤ b(E)≤ b(a).
The following statement immediately follows from Definition 2.1.

Lemma 2.2. Let A be a nontrivial antichain of P . If bXk (A) ≠ 0̂A(P), then, for

each a∈A and for all b ∈ bXk (A), it holds that

∣∣I(a)∩I(b)∩(Pa−X)∣∣> k. (2.3)

Let a ∈ P , a ≠ 0̂P . From now on, �a denotes the family of subsets of the

atom set Pa defined as follows:

�a =
{
E ⊆ b(a)−X : |E| = k+1

}
. (2.4)

Let L(Pa) denote the Boolean lattice of all subsets of the atom set Pa, and let

L(Pa)(k+1) denote the subset of all elements of rank k+1 of L(Pa). Given a

(k+1)-subset E ⊆ Pa, we denote by ε(E) the least upper bound for E in L(Pa);
conversely, given an element e ∈ L(Pa)(k+1), we denote by ε−1(e) the (k+1)-
subset of all atoms of L(Pa) that are comparable with e.
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Let A be a nontrivial antichain of P . If |b(a) − X| ≤ k for some a ∈ A,

then Definition 2.1 implies bXk (A) = 0̂A(P). In the case |b(a)−X| > k for all

a∈ A, Proposition 2.3 describes two alternative ways of elementwise finding

the (X,k)-blocker ofA; it involves the set-theoretic blocker �(·) of a set family.

Proposition 2.3. Let A be a nontrivial antichain of P . If |b(a)−X|> k, for

all a∈A, then

bXk (A)=
∧
a∈A

∨
E∈�a

b(E)=
∨

E∈�({{ε(E):E∈�a} : a∈A})

∧
e∈E

b
(
ε−1(e)

)
. (2.5)

Proof. We have

bXk (A)=
∧
a∈A

bXk (a), (2.6)

and an order-theoretic argument shows that, for every a∈A, it holds that

bXk (a)=
∨
E∈�a

b(E), (2.7)

where b(E)=∧e∈E{e}.
The inclusion bXk (A) ⊇

∨
E∈�({{ε(E):E∈�a}:a∈A})

∧
e∈E b(ε−1(e)) follows from

Definition 2.1. To prove the inclusion

bXk (A)⊆
∨

E∈�({{ε(E):E∈�a}:a∈A})

∧
e∈E

b
(
ε−1(e)

)
, (2.8)

assume that it does not hold. Consider an element b ∈ bXk (A) such that it does

not belong to the right-hand side of (2.8). In this case, there is an element a∈A
such that |I(b)∩ I(a)∩(Pa−X)| ≤ k. It means that the left-hand side of (2.8)

is not an (X,k)-blocker of A, a contradiction.

The following lemma clarifies how the parameters of the (X,k)-blocker map

influence the image of A(P); additionally, the lemma states that bXk is antitone.

Lemma 2.4. (i) Let Y ⊆ Pa, Y ⊇ X, and let j be a nonnegative integer, j ≤ k.

If A∈ A(P), then

bXj (A)≥ bXk (A)≥ bYk (A). (2.9)

(ii) For all A′,A′′ ∈ A(P) such that A′ ≤A′′, it holds that

bXk (A
′)≥ bXk (A

′′). (2.10)
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Proof. (i) There is nothing to prove if A is trivial. Suppose that A is a

nontrivial antichain of P . For each element a∈A, we by (2.7) have

bXk (a)=
∨
E∈�a

b(E)≥
∨

E⊆b(a)−Y :
|E|=k+1

b(E)= bYk (a). (2.11)

With respect to (2.6), this yields

bXk (A)=
∧
a∈A

bXk (a)≥
∧
a∈A

bYk (a)= bYk (A). (2.12)

The relation bXj (A)≥ bXk (A) is proved in a similar way.

(ii) If A′ is a trivial antichain, then the assertion immediately follows from

Definition 2.1. Suppose that A′ is nontrivial. For every a′ ∈A′, there is a′′ ∈A′′
such that {a′} ≤ {a′′} and, as a consequence, it holds the inclusion b(a′) ⊇
b(a′′), (2.7) implies bXk (a′) ≥ bXk (a′′), and the proof is completed by applying

(2.6).

In addition to Lemma 2.4(ii), we need the following statement to describe

the structure of the image of A(P) under the (X,k)-blocker map.

Lemma 2.5. For any A∈ A(P), it holds that

bXk
(
bXk (A)

)≥A. (2.13)

Proof. If A is a trivial antichain of P , then the lemma follows from

Definition 2.1 because, in this case, we have bXk (b
X
k (A)) = A. Suppose that A

is nontrivial. If bXk (A) = 0̂A(P), then we have bXk (b
X
k (A)) = 1̂A(P) ≥ A and we are

done. Finally, suppose that bXk (A) is a nontrivial antichain. On the one hand,

according to Lemma 2.2, for each a∈A and for all b ∈ bXk (A), it holds that

∣∣I(a)∩I(b)∩(Pa−X)∣∣> k. (2.14)

On the other hand, we, by Definition 2.1, have

bXk
(
bXk (A)

)=min
{
g ∈ P :

∣∣I(g)∩I(b)∩(Pa−X)∣∣> k ∀b ∈ bXk (A)
}
. (2.15)

Hence, we have bXk (b
X
k (A))≥A.

We complete this section by applying a standard technique of the theory of

posets to the lattice A(P) and the (X,k)-blocker map on it. See, for instance,

[1, Chapter IV] on (co)closure operators.
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Proposition 2.6. (i) The composite map bXk ◦ bXk is a closure operator on

A(P).
(ii) The poset BXk (P)= {bXk (A) :A∈ A(P)} is a self-dual lattice; the restriction

map bXk |BXk (P) is an anti-automorphism of BXk (P). The lattice BXk (P) is a meet-

subsemilattice of the lattice A(P).
(iii) For every B ∈ BXk (P), its preimage (bXk )−1(B) under the (X,k)-blocker

map is a convex join-subsemilattice of the lattice A(P). The greatest element of

(bXk )−1(B) is bXk (B).

Proof. In view of Lemmas 2.4(ii) and 2.5, assertions (i) and (ii) are a corol-

lary of [1, Propositions 4.36 and 4.26]. To prove (iii), choose arbitrary ele-

ments A′,A′′ ∈ (bXk )−1(B), where B = bXk (A) for some A ∈ A(P), and note that

bXk (A′∨A′′)= bXk (A′)∧bXk (A′′)= B. If B = 0̂A(P), then bXk (B)= 1̂A(P) is the great-

est element of (bXk )−1(B). If B = 1̂A(P), then (bXk )−1(B) is the one-element sub-

poset {0̂A(P)} of A(P). Finally, if B is a nontrivial antichain of P , then the ele-

ment bXk (B) = bXk (b
X
k (A)) is by (2.15) the greatest element of (bXk )−1(B). Since

the (X,k)-blocker map is antitone, we can see that the subposet (bXk )−1(B) of

A(P) is convex.

We call the poset BXk (P) from Proposition 2.6(ii) the lattice of (X,k)-blockers

in P . The poset B(P)= B∅
a

0 (P) is called in [4] the lattice of blockers in P .

3. (X,k)-deletion and (X,k)-contraction maps. In this section, we consider

order-theoretic extensions of the set-theoretic deletion and contraction maps

on clutters.

Definition 3.1. (i) If {a} is a nontrivial one-element antichain of P , then

the (X,k)-deletion {a}\kX and (X,k)-contraction {a}/kX of {a} in P are the

antichains

{a}\kX =



{a}, if

∣∣b(a)∩X∣∣≤ k,
0̂A(P), if

∣∣b(a)∩X∣∣> k, (3.1)

{a}/kX =




{a}, if
∣∣b(a)∩X∣∣≤ k,

bXk
(
bXk (a)

)
, if

∣∣b(a)∩X∣∣> k, b(a) �⊆X,
1̂A(P), if

∣∣b(a)∩X∣∣> k, b(a)⊆X.

(3.2)

(ii) If A is a nontrivial antichain of P , then the (X,k)-deletion A\kX and

(X,k)-contraction A/kX of A in P are the antichains

A\kX =
∨
a∈A

({a}\kX), A/kX =
∨
a∈A

({a}/kX). (3.3)
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(iii) The (X,k)-deletion and (X,k)-contraction of the trivial antichains of P
are

0̂A(P)\kX = 0̂A(P)/kX = 0̂A(P),

1̂A(P)\kX = 1̂A(P)/kX = 1̂A(P).
(3.4)

(iv) The map

(\kX) : A(P) �→ A(P), A � �→A\kX, (3.5)

is the operator of (X,k)-deletion on A(P).
The map

(
/kX

)
: A(P) �→ A(P), A � �→A/kX, (3.6)

is the operator of (X,k)-contraction on A(P).

Given an antichain A ∈ A(P), we use the denotations A\X and A/X in-

stead of the denotations A\0X and A/0X, respectively. The (X,0)-deletion map

(\X) : A(P)→ A(P) and the (X,0)-contraction map (/X) : A(P)→ A(P) are the

operators of deletion and contraction on A(P), respectively, considered in [5].

The following observation is an immediate consequence of Definition 3.1. If

a′,a′′ ∈ P and {a′} ≤ {a′′} in A(P), then

{a′}\kX ≤ {a′′}\kX, {a′}/kX ≤ {a′′}/kX; (3.7)

hence, in view of (3.3) and (3.4), we can formulate the following lemma.

Lemma 3.2. If A′,A′′ ∈ A(P) and A′ ≤A′′, then

A′\kX ≤A′′\kX, A′/kX ≤A′′/kX. (3.8)

Moreover, if {a} is a one-element antichain of P , then we have

{a}\kX ≤ {a} ≤ {a}/kX, (3.9)

and a more general statement is true.

Lemma 3.3. If A∈ A(P), then

A\kX ≤A≤A/kX. (3.10)

Another consequence of Definition 3.1 is that, for a one-element antichain

{a} of P , it holds that

bXk (a)\kX ≤ bXk
({a}/kX)≤ bXk (a)≤ bXk (a)/kX ≤ bXk

({a}\kX). (3.11)
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Let {a} be a nontrivial one-element antichain of P . We obviously have

({a}\kX)\kX= {a}\kX. We show that ({a}/kX)/kX = {a}/kX. If |b(a)∩X| ≤ k,

then Definition 3.1 implies ({a}/kX)/kX = {a}/kX = {a}; further, if |b(a)∩X|>
k and b(a)⊆X, then Definition 3.1 implies ({a}/kX)/kX = {a}/kX = 1̂A(P). Sup-

pose that |b(a)∩X| > k and b(a) �⊆ X. In this case, on the one hand, we have

({a}/kX)/kX ≥ {a}/kX by Lemma 3.3, on the other hand, for every element

b ∈ {a}/kX = bXk (b
X
k (a)), we have bXk (b) ≥ bXk (a), and, as a consequence, we

have ({a}/kX)/kX =
∨
b∈{a}/kX({b}/kX)≤ bXk (b

X
k (a))= {a}/kX. We arrive at the

conclusion that ({a}/kX)/kX = {a}/kX. With respect to (3.3), we can formulate

the following lemma.

Lemma 3.4. If A∈ A(P), then

(
A\kX

)\kX =A\kX, (
A/kX

)
/kX =A/kX. (3.12)

Lemmas 3.2, 3.3, and 3.4 lead to a characterization of the (X,k)-deletion and

(X,k)-contraction maps in terms of (co)closure operators.

Proposition 3.5. The map (\kX) is a coclosure operator on A(P). The map

(/kX) is a closure operator on A(P).

The following proposition is a counterpart of Lemma 2.4(i).

Proposition 3.6. Let Y ⊆ Pa, Y ⊇X, and let m be an integer, k≤m< |Pa|.
If A∈ A(P), then

A\mX ≥A\kX ≥A\kY ,

A/kX ≤A/kY ≤A/mY.
(3.13)

Proof. If A is a trivial antichain, then the proposition follows from (3.4).

Suppose that A is nontrivial. For each a ∈ A, (3.1) implies {a}\kX ≥ {a}\kY ,

(3.2) implies {a}/kX ≤ {a}/kY , and (3.3) yields

A\kX =
∨
a∈A

({a}\kX)≥ ∨
a∈A

({a}\kY )=A\kY ,
A/kX =

∨
a∈A

({a}/kX)≤ ∨
a∈A

({a}/kY )=A/kY .
(3.14)

Other relations are proved in a similar way.

We denote the images (\kX)(A(P))= {A\kX :A∈ A(P)} and (/kX)(A(P))=
{A/kX : A ∈ A(P)} by A(P)\kX and A(P)/kX, respectively. We can interpret

well-known properties of (semi)lattice maps and (co)closure operators on lat-

tices in the case of the (X,k)-deletion and (X,k)-contraction maps.
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Definition 3.1 implies that the maps (\kX),(/kX) : A(P) → A(P) are upper

{0̂A(P), 1̂A(P)}-homomorphisms, that is, for all A′,A′′ ∈ A(P), we have (A′ ∨
A′′)\kX=(A′\kX)∨(A′′\kX) and (A′∨A′′)/kX=(A′/kX)∨(A′′/kX), and, more-

over, we have 0̂A(P)\kX= 0̂A(P)/kX = 0̂A(P) and 1̂A(P)\kX = 1̂A(P)/kX = 1̂A(P).

The posets A(P)\kX and A(P)/kX, with the partial orders induced by the

partial order on A(P), are lattices.

We call the poset A(P)\kX the lattice of (X,k)-deletions in P , and we call the

poset A(P)/kX the lattice of (X,k)-contractions in P .

The lattice A(P)\kX is a join-subsemilattice of A(P). Denote by ∧A(P)\kX the

operation of meet in A(P)\kX. If D′,D′′ ∈ A(P)\kX, then we have D′ ∧A(P)\kX
D′′ = (D′ ∧D′′)\kX.

The lattice A(P)/kX is a sublattice of A(P).
IfD ∈ A(P)\kX, then the preimage (\kX)−1(D) ofD under the (X,k)-deletion

map is the closed interval [D,D∨∨E⊆X:|E|=k+1 b(E)] of A(P).
If D ∈ A(P)/kX, then the preimage (/kX)−1(D) of D under the (X,k)-

contraction map is a convex join-subsemilattice of the lattice A(P), with the

greatest element D.

Relations (1.2) and (1.4) have the following analogue.

Theorem 3.7. If A∈ A(P), then

bXk (A)\kX ≤ bXk
(
A/kX

)≤ bXk (A)≤ bXk (A)/kX ≤ bXk
(
A\kX

)
. (3.15)

Proof. There is nothing to prove if A is a trivial antichain. Suppose that A
is nontrivial. The relations

bXk (A)\kX ≤ bXk (A)≤ bXk (A)/kX, bXk
(
A/kX

)≤ bXk (A)≤ bXk
(
A\kX

)
(3.16)

follow from Lemmas 3.3 and 2.4(ii).

We need the following auxiliary relations. If A′ and A′′ are arbitrary an-

tichains of P , then

(A′ ∧A′′)\kX ≤
(
A′\kX

)∧(A′′\kX), (3.17)

(A′ ∧A′′)/kX ≤
(
A′/kX

)∧(A′′/kX). (3.18)

To prove bXk (A)\kX ≤ bXk (A/kX), we use (3.17) and (3.11), and we see that

bXk (A)\kX =
( ∧
a∈A

bXk (a)
)
\kX ≤

∧
a∈A

(
bXk (a)\kX

)≤ ∧
a∈A

bXk
({a}/kX)

= bXk

( ∨
a∈A

({a}/kX)
)
= bXk

(
A/kX

)
.

(3.19)
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To prove bXk (A)/kX ≤ bXk (A\kX), we use (3.18) and (3.11), and we see that

bXk (A)/kX =
( ∧
a∈A

bXk (a)
)
/kX ≤

∧
a∈A

(
bXk (a)/kX

)≤ ∧
a∈A

bXk
({a}\kX)

= bXk

( ∨
a∈A

({a}\kX)
)
= bXk

(
A\kX

)
.

(3.20)
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