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Commutative H∗-algebra is characterized in terms of idempotents. Here we offer
three characterizations.
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1. Introduction. In the past, the author used commuting idempotents to

characterize continuous functions defined on a certain space [3, 4]. For exam-

ple, it was shown in [3] that a certain Banach algebra is isometrically isomorphic

to the space C(S) of all continuous complex-valued functions on a totally dis-

connected compact space S. In the sequel, we use idempotents to characterize

commutative H∗-algebras. An interesting consequence of this results (Theo-

rems 3.1, 3.2, and 3.3 below) is somewhat unusual forms of characterizations

of Hilbert spaces.

2. Preliminaries. A properH∗-algebra is a Hilbert algebra (a Banach algebra

with a Hilbert space norm) which has an involution x→ x∗ such that (xy,z)=
(y,x∗z)= (x,zy∗) for all x,y,z ∈A. An idempotent is a nonzero member e
of A such that e2 = e.

Definition 2.1. An idempotent e in an algebra a is said to be primary if

ef = e for any idempotent f ∈A such that ef ≠ 0.

Note that the product of any two distinct primary idempotents is zero.

3. Main results. Let A be a complex Banach algebra. Let I be the set of

idempotents in A, let P be the set of all primary idempotents, and let Ao
be the set of all (complex) finite linear combinations of primary idempotents

Ao = {
∑n
i=1λiei : ei ∈ P, i= 1, . . . ,n and λ1, . . . ,λn are complex numbers}.

Theorem 3.1. Let A be a complex Banach algebra such that all members of

P commute and Ao is dense in A. Assume further that ‖x+y‖2 = ‖x‖2+‖y‖2

for allx,y ∈Ao such thatxy = 0. Then,A is a proper commutativeH∗-algebra.

Proof. First, note that A is commutative since members of Ao commute.

Condition “‖x+y‖2=‖x‖2+‖y‖2 ifxy=0” implies that ‖x‖2=∑n
i=1 |λi|2‖ei‖2
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for any member x =∑n
i=1λiei of Ao (it can be readily established using induc-

tion on n). This fact can be used to show that there is an inner product (,) and

an involution x→ x∗ such that (x,x)= ‖x‖2 = ‖x∗‖2 and (xy,z)= (y,x∗z)
for allx,y,z ∈Ao. In fact, all we have to do is to set (x,y)= (∑iλiei,

∑
jµjej)=∑

i,jλiµj‖eiej‖2 and x∗ =∑λiei for members x =∑λiei and y =∑µjej of Ao
(note that eiej = 0 if i≠ j).

We leave it to the reader to verify that A is isometrically isomorphic to

the space L2(P,µ) of all complex-valued functions x( ) on P such that
∑
e∈P |x(e)|2‖e‖2 < ∞, with pointwise multiplication of members of L2(P,µ)

(xy(e) = x(e)y(e) for all x,y ∈ L2(P,µ)). (Measure µ on P is the set func-

tion that associates with each member e of P the positive number ‖e‖.) (One

can interpret the expression “
∑
e∈P |x(e)|2‖e‖2 < ∞” to mean “there exists a

countable subset Px = {e1,e2, . . . ,en, . . .} of P such that x(e) = 0 if x ∉ Px and
∑∞
i=1 |x(ei)|2‖ei‖2 converges”). Obviously, L2(P,µ) is a proper commutative

H∗-algebra under the pointwise multiplication.

Theorem 3.2. Let A be a complex Banach algebra such that the members

of I commute and that the set A1 of finite linear combinations of I is dense in

A(A1 = {
∑n
i=1λiei,e1 ···en ∈ I and λ1, . . . ,λn are complex numbers}). Assume

further that

(i) for each e∈ I, there exists f ∈ P such that ef ≠ 0,

(ii) if x,y ∈A and xy = 0, then ‖x+y‖2+‖x‖2+‖y‖2.

Then, A is a commutative proper H∗-algebra.

Proof. First, note that A is commutative. Also, it follows from assumption

(i) that, for each e∈ I, there are primary idempotents f1 ···fn (a finite number)

such that e = f1+f2+···+fn and fifj = 0 if i ≠ j. To see this, let e ∈ I and

f ∈ P be such that ef ≠ 0. Then, ef = f and g = e−f is also an idempotent

such that fg = 0. This means that ‖e‖2 = ‖f + g‖2 = ‖f‖2 + ‖g‖2, and so

‖g‖2 = ‖e‖2−‖f‖2 < ‖e‖2−1 since ‖f‖> 1 (‖f‖ = ‖f 2‖ ≤ ‖f‖2 and ‖f‖≠ 0).
It follows that if n is any natural number such that ‖e‖2 < n, then ‖g‖2 <
n− 1. Now, we can use induction on n to see that each idempotent can be

represented as a finite sum of primary idempotents. (Note that if g is a finite

sum of mutually annihilating members of P , then so is e = f +g since f ∈ P
and fg = 0.)

But this means that Ao (the space of finite linear combinations of the mem-

bers of P ) is dense in A. Theorem 3.1 now implies that A is an H∗-algebra.

Theorem 3.3. Let A be a Banach algebra such that all members of I com-

mute, that the space of all finite linear combinations of members of I is dense

in A, and that ‖x+y‖2 = ‖x‖2+‖y‖2 if xy = 0 for any x,y ∈A.

Assume further that, for each closed ideal J in A, there is an ideal J1 such

that J∩J1 = (0) and J+J1 = A, that is, for any a ∈ A, there are a1 ∈ J and

a2 ∈ J1 such that a= a1+a2. Then, A is a commutative H∗-algebra.
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Proof. We only need to show that, for each e ∈ I, there exists f ∈ P such

that ef ≠ 0.

Let e ∈ I and let N be the annihilator of e, N = {x ∈ A : xe = 0}. Then,

ex−x ∈N for each x ∈A, that is, e is a relative identity modulo N and N is a

regular ideal [2, Section 20] (see also [2, Subsection 22D and Subsection 22E]).

Let M be the maximal regular ideal such that M ⊃ N [2, Subsection 20B] and

letM1 be an ideal such thatM+M1 =A andM∩M1 = {0}. Write e= f+u with

f ∈M1,u∈M . Then, f is also a relative identity moduloM(fx−x = (e−u)x−
x = ex−x−ux ∈M). Also, f is an idempotent since ff −f ∈M1∩M = 0 and

f ≠ 0 (otherwise e∈M).

Now, we show that f ∈ P , that is, f is primary. Let h∈ I be such that fh≠ 0.

If fh ≠ f , then f −fh ≠ 0, and we have a decomposition f = f1+f2 of f as

a sum of nonzero idempotents f1 = fh and f2 = f −fh such that f1f2 = 0.

Let M1 = f1A+M = {f1a+m : a ∈ A, m ∈ M}. It is a regular ideal includ-

ing M strictly larger than M(f1 ∈ M1, f1 ∉ M) (also, ex−x ∈ M ⊂ M1). This

contradicts the maximality of M . Thus, fh = f for each h ∈ I with fh ≠ 0.

Theorem 3.2 now implies that A is a commutative H∗-algebra.

4. Some properties of H∗-algebra. Now, we show that every proper com-

mutativeH∗-algebra satisfies assumptions of Theorems 3.1, 3.2, and 3.3. First,

note that, in any commutative Banach algebra, an idempotent e is primary if

and only if it cannot be written as a sum e= e1+e2 of two mutually annihilat-

ing, e1e2 = 0, nonzero idempotents e1 and e2.

Indeed, let e be primary and assume that e= e1+e2 for some nonzero idem-

potents e1 and e2 such that e1e2 = 0. Then, e1e = e1 and e1e = e since e is

primary. This implies e2 = 0, which is a contradiction.

Conversely, assume that e≠ ef for some idempotent f such that e1 = ef ≠
0. Then, e2 = f − ef is also nonzero idempotent such that e1e2 = 0 (e2

2 =
(e− f)2 = e− ef − ef + ef = e2 and e1e2 = ef(e− f) = ef − ef = 0). This

means that if e is not primary, then it has a decomposition e = e1+ e2 into

mutually annihilating nonzero idempotents.

In the case of a proper commutative H∗-algebra, the fact that e is primary

would also imply that e is selfadjoint: e∗e = e since e∗ is also idempotent

((e∗)2 = (ee)∗ = e∗). This means that, in this case, e is primary if and only if

e is selfadjoint and primitive in the sense of Ambrose [1, Definition 3.3, page

376].

It follows that [1, Corollary 4.1, page 382] implies that, in each proper com-

mutativeH∗-algebra, the setAo (of finite linear combinations of primary idem-

potents) is dense in A.

The remark in [1, page 369] of (orthogonal complement of any ideal is an

ideal of the same kind (in the paragraph above Definition 1.4)) implies that

every commutative H∗-algebra satisfies the condition of Theorem 3.3 about

the existence of the ideal J1. But it was shown in the proof of Theorem 3.3 that
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this fact implies that, for each idempotent e, there is a primary idempotent f
such that ef ≠ 0, which is one of the assumptions of Theorem 3.2.

It remains to show that xy = 0 for any x, y in a proper commutative H∗-

algebra implies thatx is orthogonal toy (which implies that ‖x+y‖2 = ‖x‖2+
‖y‖2). We will use the terminology of [1].

So, let A be a commutative properH∗-algebra. Let P be the set of all primary

idempotent. Then, P is a maximal family of doubly orthogonal primitive sa-

idempotents (see [1, Definition 3.1]) (it was remarked above that the product ef
of any two distinct primary idempotents e, f is zero, ef = 0) and so it follows

from [1] that A = ∑αeαA and each eαA is isomorphic to the complex field.

This means that each x ∈ A has the form x = ∑e∈Px(e)e for some complex

number x(e) for each e ∈ P and
∑
e∈P |x(e)|2‖e‖2 < ∞. It is easy to see that

the products xy and (x,y) are expressible in terms of this representation

by the formulae xy =∑e∈Px(e)y(e)e and (x,y) =∑e∈Px(e)y(e)‖e‖2. From

this, it is easy to show that xy = 0 implies (x,y)= 0 (note that if the product

of any two complex numbers is zero, then either of the numbers (or both) is

zero).

5. Some consequences. One of consequences of Theorems 3.1, 3.2, and 3.3

is that each of the above theorems can be used to characterize Hilbert spaces.

The reason for that is the fact that each Hilbert space has also a structure of

a proper H∗-algebra. To see this, all we have to do is to take any orthonormal

base {eα}α∈ Γ of a Hilbert space H and define multiplication on it by setting

xy =∑α∈Γx(eα)y(eα)eα, where x =∑α∈Γx(eα)eα and y =∑α∈Γy(eα)eα are

representations of x and y in terms of the orthonormal base {eα}α∈Γ (x(α)=
(x,eα)) [5]. It is easy to see that H becomes a proper commutative H∗-algebra

with respect to the involution x→ x∗ with x∗ =∑α∈Γx(eα)eα. Thus, we have

the following characterization of a Hilbert space (it is somewhat awkward, yet

it is a characterization). It is stated as a corollary of the above theorems.

Corollary 5.1. Let B be a Banach space. Assume that it is possible to define

a multiplication on B with respect to which it is a Banach algebra that has

properties stated in either one of the theorems above (Theorems 3.1, 3.2, and

3.3). Then, B is a Hilbert space.
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