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1. Introduction. Let Sn denote the symmetric group on {1,2, . . . ,n}. A per-

mutation σ ∈ Sn is said to be a derangement of {1,2, . . . ,n} if σ(i) �= i for

1 ≤ i ≤ n. We let Dn be the set of derangements of {1,2, . . . ,n} and set dn =
|Dn|. A classic problem of combinatorics is to compute the probability that a

permutation selected at random is a derangement. Typically, the principle of

inclusion-exclusion is used to prove that

dn =n!
n∑
k=0

(−1)k

k!
. (1.1)

The exact solution of the derangement problem is then given by dn/n!. Fur-

thermore, (1.1) immediately implies the celebrated fact that

lim
n→∞

dn
n!
= 1
e
. (1.2)

Historically, dn/n! was first computed in 1708 by de Montmort [4] in the

more general context of the problème des rencontres (the matching problem).

Since de Montmort’s day, a seemingly endless stream of authors have consid-

ered variations on the derangement problem. We are not different. We survey

a plethora of more than n! q-derangement problems relative to the Mahonian

process. Besides a brief discussion of the q-derangement problems solved by

Garsia and Remmel [5], Gessel [7], Griffin [8], and Wachs [16], we present so-

lutions relative to four Mahonian statistics. Although two of the four distribu-

tions we consider are not new, our proofs are.

2. A thumbnail sketch of the q-calculus. The q-calculus is a vast subject.

Gasper and Rahman [6] provide a comprehensive account. Only the material

we need is touched upon here.
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An objectX(q) is said to be a q-analog ofX if limq→1X(q)=X. The standard

q-analogs of an integer n≥ 0 and its factorial, respectively, are

[n]= 1+q+q2+···+qn−1, [n]!= [1][2]···[n], (2.1)

where the empty sum is 0 and the empty product is 1. As a partial sum of a

geometric series, [n]= (1−qn)/(1−q) when q �= 1.

A useful relative of the q-factorial is the q-shifted factorial of a defined

by (a;q)n = (1−a)(1−aq)(1−aq2)···(1−aqn−1). The precise relationship

between the two is given by [n]!= (q;q)n/(1−q)n.

In 1843, Cauchy [3] proved for complex |q|,|z|< 1 that

∞∑
n=0

(a;q)nzn

(q;q)n
=

∞∏
i=0

1−qiaz
1−qiz . (2.2)

Replacing a by qa and letting q→ 1− in (2.2) gives the binomial series

∞∑
n=0

(
a+n−1

n

)
zn = (1−z)−a. (2.3)

Two q-exponential functions play a central role in our discourse; namely,

eq(z)=
∞∑
n=0

zn

[n]!
, Eq(z)=

∞∑
n=0

q(
k
2)zn

[n]!
. (2.4)

Note that eq(z) contains both the geometric series e0(z) =
∑∞
n=0zn and the

exponential function e1(z) = ez as special cases. For complex |q|,|z| < 1, the

q-exponentials satisfy the fundamental identities

eq(z)=
∞∏
i=0

(
1−qi(1−q)z)−1, Eq(z)=

∞∏
i=0

(
1+qi(1−q)z). (2.5)

As
∏∞
i=0(1−qi(1−q)z)−1 = limn→∞

∏n
i=0(1−qiz/[n])−1, the first formula in

(2.5) is seen to be a q-analog of the classic calculus limit

ez = lim
n→∞

(
1− z

n

)−n
. (2.6)

Similarly, the second is a q-analog of ez = limn→∞(1+z/n)n.

The formulas in (2.5) are more commonly stated in a form with z replaced

by z(1−q) and are known as Euler’s identities. Their significance in the theory

of partitions is discussed in Andrews [1]. Proofs of Euler’s identities and of the

more general q-binomial series (2.2) may be found in [1, 6].
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The q-derivative of a function f is defined by

f∗(z)= f(z)−f(zq)
(1−q)z . (2.7)

As expected, limq→1f∗ = f ′. Also, the q-derivative has many properties analo-

gous to the usual derivative. It is easy to show that (zn)∗ = [n]zn−1, (eq(z))∗ =
eq(z), and that (f (z)g(z))∗ = f∗(z)g(z)+f(z)g∗(zq).

3. Mahonian statistics. A statistic s : Sn→ {0,1,2, . . . ,n(n−1)/2} is said to

be Mahonian if

∑
σ∈Sn

qs(σ) = [n]!. (3.1)

Note that (3.1) is a q-analog of the fact that |Sn| = n!. As Garsia and Remmel

[5] would say, (3.1) is just a q-counting of permutations.

The Descent set, major index, and inversion number of a permutation σ ∈ Sn
are, respectively, defined as Desσ = {i : 1≤ i≤n−1, σ(i) > σ(i+1)},

majσ =
∑

i∈Desσ
i, invσ = ∣∣{(i,j) : 1≤ i < j ≤n, σ(i) > σ(j)}∣∣ (3.2)

for σ = 634512∈ S6, Desσ = {1,4}, majσ = 1+4= 5, and invσ = 11.

Rodriguez [14] in 1839 and MacMahon [10] in 1913, respectively, showed

that
∑
σ∈Sn q

invσ = [n]! and
∑
σ∈Sn q

majσ = [n]!. The adjective “Mahonian” was

coined for such statistics to honor MacMahon.

Many new Mahonian statistics have been discovered since then. Mentioning

but two families, Rawlings [11] noted for any integer r , 1 ≤ r ≤ n, that the

statistic

indr σ =
∣∣{(i,j) : 1≤ i < j ≤n, σ(i) > σ(j) > σ(i)−r}∣∣+∑i, (3.3)

where the sum is over the set {i : 1≤ i≤n−1, σ(i)≥ σ(i+1)+r} is Mahonian

on Sn. Note that both the major index and the inversion number are special

cases of indr : for σ ∈ Sn, ind1σ = majσ and indnσ = invσ . Subsequently,

Han [9] determined a larger class that, in particular, contains Denert’s statistic

den, which for σ ∈ Sn, is defined to be the number of ordered pairs (i,j),
1≤ i < j ≤n, satisfying

(a) σ(i)≤ j or σ(i) > σ(j) if σ(j) > j or

(b) σ(j)≤ σ(i)≤ j if σ(j)≤ j.

4. The Mahonian process. The Mahonian process considered in [13] con-

sists of “Bernoulli propelling” a dot up each column of an n×n array of cells.
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In the first column, a dot is placed initially in a cell specified by a placement

rule (PLR). Then, a coin that has probability q < 1 of landing tails up is tossed

until a head occurs. Each time tail is tossed, the dot moves up a cell with one

exception: if tails occur when the dot is in the top cell, the dot moves to the bot-

tom cell. When a head is tossed, the dot comes to rest. For columns 2 through

n, the same procedure is repeated with the proviso that rows in which dots

have come to rest are skipped over by subsequent dots (so, only one dot is

allowed per row). For the PLR that calls for each dot to be initially placed in

the lowest available cell, Example 4.1 below provides an illustration (x’s have

been inserted to indicate cells to be skipped over in subsequent play).

Example 4.1.

Column 1: TH • x x

Column 2: TTTTTH •
Column 3: H • x x x

Column 4: TTH • x

The outcome may be associated with a permutation σ ∈ Sn in a natural way:

numbering the rows from bottom to top with 1 through n and the columns

from left to right with 1 through n, let σ(i) be the number of the row in which

the ith dot comes to rest. In Example 4.1, σ = 2413∈ S4.

Example 4.2. As a second example, note that if the PLR calls for (a) the first

dot to be placed in the lowest available cell in column 1 and (b) the ith dot to

be initially placed in the first available cell above the row where the (i−1)st

dot stopped, the same Bernoulli sequence as above generates

Column 1: TH •
Column 2: TTTTTH • x

Column 3: H • x x x

Column 4: TTH • x x

The associated permutation is σ = 2134∈ S4.

Relative to a PLR, the norm of a permutation σ ∈ Sn, denoted by |σ |, is de-

fined to be the number of tails in the shortest Bernoulli sequence that generates

σ . In Example 4.1, the shortest sequence that generates 2413 is THTTHHH and

|2413| = 3. In Example 4.2, |2134| = 3.

By noting that the probability of a dot in the ith column coming to rest in

the kth empty cell, 0≤ k≤n−i, in advance of its initial placement is

qk(1−q)(1+qn−i+1+q2(n−i+1)+···)= qk(1−q)
1−qn−i+1

= qk

[n−i+1]
, (4.1)

Rawlings [13] proved the following theorem.
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Theorem 4.3. For any PLR and 0 ≤ q < 1, the probability of σ ∈ Sn being

generated by the Mahonian process is

Mn,q(σ)= q|σ |

[n]!
. (4.2)

The measureMn,q is a q-analog of the uniform one on Sn: limq→1−Mn,q(σ)=
1/n!. Another interesting side of Theorem 4.3 is that it supplies a whole family

of Mahonian statistics. As
∑
σ∈Sn Mn,q(σ)= 1, the following corollary is imme-

diate.

Corollary 4.4. Relative to any PLR, the norm |·| is Mahonian, that is,

∑
σ∈Sn

q|σ | = [n]!. (4.3)

Corollary 4.4 easily gives n! plus Mahonian statistics on Sn. To see how, note

that there are n different cells to initially place a dot in the first column, n−1

cells to initially place a dot in the second column, and so on. Thus, there are

at least n! distinct PLRs. Moreover, running the process with an altered order

on the columns (say from the rightmost to leftmost columns) gives rise to yet

more such statistics.

As noted in [13], the family of Mahonian statistics arising in Corollary 4.4

coincides with the one discovered by Han [9]. For the Mahonian process run

columnwise from left to right, Treadway and Rawlings [15] observed for the

PLRs of Examples 4.1 and 4.2, respectively, that |σ | = invσ and |σ | = comajσ ,

where the comajor index is defined by comajσ =∑i∈Desσ (n−i).
When the Mahonian process is run columnwise from right to left and dots

are propelled down, it was further noted [13] that the permutation norm is

equal to the maj, indr , and den for the respective PLRs that initially place the

first dot in the top cell of the rightmost column and the ith dot in the ith
column from the right and the first available cell

(i) maj PLR: below the row in which the (i−1)st dot rests,

(ii) indr PLR: below the (r−1)st row above the row in which the (i−1)st dot

rests (if there is no (r −1)st row above, then use the top row),

(iii) den PLR: on or below the diagonal (running from upper right corner to

the lower left).

5. A family of q-derangement problems. Recall that Dn = {σ ∈ Sn : σ(i) �=
i for 1≤ i≤n}. Relative to a given PLR, define

dn(q)=
∑

σ∈Dn
q|σ |. (5.1)

As dn(1)= dn, the problem of computing dn(q) is a q-derangement problem.
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To date, only a few members of this family of problems have been solved.

For |σ | =majσ , Gessel [7] in 1981 obtained the q-analog

dn(q)= [n]!
n∑
k=0

(−1)k

[k]!
(5.2)

of (1.1) as a consequence of a more general enumerative result. The asymptotic

probability of a derangement being generated in this case is then seen to be

lim
n→∞

dn(q)
[n]!

= 1
eq(1)

= Eq(−1). (5.3)

A bijective proof of (5.2) was later given by Wachs [16].

Formula (5.2) is also the solution for the q-derangement problem when

|σ | = comajσ . As is evident from the geometry of the PLRs for maj and comaj,

there is a simple explanation of this fact. The reversal and complement of a

permutation σ = σ(1)σ(2)···σ(n)∈ Sn, respectively, are

�(σ)= σ(n)···σ(1), �(σ)= (n+1−σ(1))···(n+1−σ(n)). (5.4)

The map � ◦ � : Sn → Sn is a bijection such that majσ = comaj� ◦ �(σ)
and such that σ and � ◦�(σ) have the same number of fixed points. Thus,∑
σ∈Dn q

majσ =∑σ∈Dn q
comajσ . More generally, the bijection �◦� exposes the

equivalence of q-derangement problems relative to the Mahonian process run

columnwise from left to right with dots going up to those arising when the

process is run columnwise from right to left with dots going down.

When |σ | = invσ , Griffin [8] in 1996 proved that there is a striking disconti-

nuity in the asymptotic probability of a derangement being generated; namely,

lim
n→∞

dn(q)
[n]!

=



1
e

if q = 1,

0 if 0≤ q < 1.
(5.5)

He gave no closed formula for dn(q).
At first glance, the q-derangement problems solved by Garsia and Remmel

[5] and by Rawlings [11] do not appear to fit into the framework of the Maho-

nian process.

6. Cycle placement rules. From a probabilistic point of view, the primary

difficulty in solving a q-derangement problem relative to the Mahonian process

lies in the fact that the generation of fixed points is not columnwise indepen-

dent. Beyond a few conjectures and heuristic explanations in Section 7, we
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have little new to say in this regard. However, by adding a twist to the process

of Section 4, we discovered a class of q-derangement problems for which an

appeal to independence may be made.

The twist consists of letting the process more or less determine the column

order as it runs. We begin by Bernoulli propelling a dot up the first (leftmost)

column. If the dot stops in the ith row (from the bottom) with i �= 1, then the

second dot is propelled up the ith column. If the second dot comes to rest

in the jth row with j �= 1, then the third dot is propelled up the jth column.

This is continued until a dot comes to rest in the first row. The procedure is

repeated until no empty column remains. For instance, if each dot is initially

inserted in the second lowest available cell (with the exception that the last dot

is inserted in the only available cell), then the Bernoulli sequence TTHHTTHHH

generates the outcome in the following example.

Example 6.1.

Column 1: TTH •
Column 4: H •
Column 2: TTH •
Column 3: H •
Column 5: H •

The associated permutation is σ = 41523∈ S5.

Note that if σ = c1c2 ···ck, where c1,c2, . . . ,ck are disjoint cycles such that

the minimum element in each cj appears at the left in cj and the minimum

of cj−1 is less than the minimum of cj for 2 ≤ j ≤ k, then the column order

corresponds with the order of the integers in c1c2 ···ck read from left to right.

In Example 6.1, σ = (142)(35) and the column order is 1,4,2,3,5. Thus, the

column order is compatible with the cycle structure of the associated permu-

tation.

We use the term cycle placement rule (CPLR) when the columns are to be se-

lected as in Example 6.1. It should be noted that Theorem 4.3 and its corollary

remain valid for CPLRs.

7. Four CPLR q-derangement problems. Under the CPLR of Example 6.1

that calls for each dot to be placed in the second lowest available cell, a de-

rangement is generated precisely when 1 winds up in a k-cycle, 2≤ k≤n and

the remaining n−k elements are deranged. As knowledge of the first cycle

in no way influences the generation of subsequent cycles, it follows that the

probability of a derangement being generated satisfies the recurrence

dn(q)
[n]!

=
n∑
k=2

Prob
(
1 is in a k-cycle

)dn−k(q)
[n−k]! (7.1)
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for n≥ 2. In view of (4.1), the probability that 1 is in a 1-cycle is qn−1/[n]. So,

1 is not in a 1-cycle with probability 1−qn−1/[n]= [n−1]/[n]. Repeated use

of (4.1) then leads to

Prob
(
1 is in a k-cycle

)= qn−k

[n−k]
k−1∏
i=1

[n−i]
[n−i+1]

= q
n−k

[n]
. (7.2)

Thus,

dn(q)
[n−1]!

= qn
n∑
k=2

q−k
dn−k(q)
[n−k]! (7.3)

for n≥ 2. The appropriate initial conditions are d0(q)= 1 and d1(q)= 0.

The power of generating functions may now be brought to bear. Define

D(z)=
∞∑
n≥0

dn(q)
[n]!

zn. (7.4)

As 0≤ dn(q)/[n]!≤ 1, D(z) certainly converges in the complex disk |z|< 1.

Multiplying both sides of (7.3) by zn and then summing over n ≥ 2 yields

the q-differential equation

D∗(z)= z
1−zD(zq) (7.5)

with the initial condition D(0) = 1. Letting q → 1− in (7.5) results in the sep-

arable equation D′ = zD/(1− z), which, when solved, gives the well-known

exponential generating function for the derangement numbers; namely,

∞∑
n≥0

dn
n!
zn = e−z

1−z . (7.6)

So, how does one solve the q-differential equation in (7.5) for 0 ≤ q < 1?

The solution is actually as simple as the case q = 1. Using the definition of the

q-derivative and a little algebra, (7.5) may be rewritten as

D(z)= (1−z/α)(1−z/β)
1−z D(zq), (7.7)

where

α= 1+√4q−3
2(1−q) , β= 1−√4q−3

2(1−q) . (7.8)
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Iteration of (7.7) then leads to

D(z)=D(zqn+1) n∏
i=0

(
1−qiz/α)(1−qiz/β)

1−qiz . (7.9)

As
∑∞
i=0qi converges absolutely for |q| < 1, the products (see [2, page 208])∏∞

i=0(1−qiz/α),
∏∞
i=0(1−qiz/β), and

∏∞
i=0(1−qiz) are all absolutely con-

vergent (to nonzero values) in some open disk containing the origin. As D is

continuous at the origin, taking the limit as n→∞ in (7.9) therefore gives

D(z)=
∞∏
i=0

(
1−qiz/α)(1−qiz/β)

1−qiz . (7.10)

Towards writing (7.10) in a form analogous to (7.6), note that (2.5) implies

D(z)= Eq
(−2z/

(
1+√4q−3

))
1−z

∞∏
i=0

1−qiz/β
1−qi+1z

. (7.11)

Then, the fact that limq→1−
∏∞
i=0(1−qiz/β)/(1−qi+1z)= 1 (left as an exercise)

shows that (7.6) is indeed the limit of (7.10) as q→ 1−.

With the aid of (2.2), we may further extract a closed formula for our q-

derangement problem from (7.11); namely,

dn(q)
[n]!

=
n∑
k=0

q(
k
2)(−2)k(1/β;q)n−k

[k]!
(
1+√4q−3

)k(q;q)n−k
. (7.12)

To compute the asymptotic probability, it is tempting to apply the analytic

fact that if {an} converges to a, then a= limz→1−(1−z)
∑∞
n=0anzn directly to

(7.10). However, we do not know a priori that limn→∞dn(q)/[n]! exists. So, we

take a more cautious approach.

First note that if a series
∑∞
k=0Ak =A of complex numbers converges abso-

lutely and a complex sequence {Bn} converges to B, then

lim
n→∞

n∑
k=0

AkBn−k =AB. (7.13)

An application of the ratio test reveals that
∑n
k=0q(

k
2)(−2)k/[k]!(1+√4q−3)k

converges absolutely for |q| < 1. Also, limn→∞(1/β;q)n =
∏∞
i=0(1−qi/β) and

limn→∞(q;q)n =
∏∞
i=0(1 − qi) converge absolutely (to nonzero values). So,
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Table 7.1

Placement α,β D(z)

CPLR1
1±√4q−3

2(1−q)
Eq
(−2z/

(
1+√4q−3

))
1−z

∞∏
i=0

1−qiz/β
1−qi+1z

CPLR2
−q±

√
4q−3q2

2q(1−q)
eq
(
−2qz/

(
q+

√
4q−3q2

))
1−z

∞∏
i=0

1−zqi
1−qiz/α

CPLR3
1±√1−4q(1−q)

2q(1−q)
Eq
(−2qz/

(
1+√1−4q(1−q)))
1−z

∞∏
i=0

1−qiz/β
1−qi+1z

CPLR4
−q±

√
q2+4(1−q)

2(1−q)
eq
(
−2z/

(
q+

√
q2+4(1−q)

))
1−z

∞∏
i=0

1−qiz
1−qiz/α

(7.12) and (7.13) imply

lim
n→∞

dn(q)
[n]!

= Eq
( −2

1+√4q−3

) ∞∏
i=0

1−qi/β
1−qi . (7.14)

The above approaches (1.2) as q→ 1−.

There are three other CPLRs for which the associated q-derangement prob-

lem may be solved in much the same way as the above one. Without going into

detail, we record the respective generating functions in Table 7.1 for the CPLRs

calling for

(i) CPLR1: each dot to be placed in the second lowest available cell,

(ii) CPLR2: each dot to be placed in the lowest available cell,

(iii) CPLR3: each dot associated with the beginning of a new cycle to be placed

in the lowest available cell, while all other dots are placed in the second

lowest available cell,

(iv) CPLR4: each dot associated with the beginning of a new cycle to be placed

in the second lowest available cell, while all other dots are placed in the

lowest available cell.

We note that the asymptotic probability of a derangement being generated

under CPLR2 and CPLR4 exhibits the same discontinuity as in (5.5).

The generating functions for CPLR1 and CPLR2 coincide exactly with ones

derived earlier in [12] that count permutations having no minimum compo-

nents by inversion number. Our treatment here is entirely different.

8. Some heuristic arguments and conjectures. We restrict our attention

to the Mahonian process run as initially described, that is, with the column

order being from left to right. Our comments in this section are far less than

rigorous.
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Relative to the comaj-PLR of Example 4.2, Griffin gave a very believable heu-

ristic explanation (unpublished) for why

lim
n→∞

dn(q)
[n]!

= Eq(−1) (8.1)

based on the product expansion

Eq(−1)=
∞∏
i=0

(
1−qi(1−q)). (8.2)

As the process runs, the trajectory of the dots winds itself around the n×n
array. On the (i+1)st upswing through the array, the process crosses the diag-

onal for the (i+1)st time (except possibly on the last upswing). The probability

that a fixed point occurs say in row k on the (i+1)st upswing is equal to the

probability that no dot stopped in row k on the i previous upswings (which is

qi) times the probability that a dot on the (i+1)st upswing comes to rest in row

k (which is (1−q)). Thus, if ω(n) denotes the expected number of upswings,

then the approximate probability of a derangement in Sn being generated is

ω(n)∏
i=0

(
1−qi(1−q)). (8.3)

As limn→∞ω(n)=∞, (8.1) is seen to indeed be plausible. The gap in the argu-

ment lies in proving that the error made in (8.3) goes to 0.

Griffin’s heuristic viewpoint may be modified to give a few conjectures re-

garding other PLRs. Let ρi denote the number of dots that enter row i in the

first i−1 columns. We conjecture that a PLR for which both

(i) the expected value of ρi and

(ii) the number of tails required for the ith dot to reach the ith row from its

initial placement

are uniformly bounded by M will generate a derangement with asymptotic

probability 0 for q < 1. Under such a PLR, the probability of a fixed point in

the ith column is expected to be less than or equal to c = (1−q2M(1−q)).
As c < 1, a product involving infinitely many such factors diverges to 0. From

Griffin’s work [8], it may be shown that the inv-PLR of Example 4.1 falls into

this category. We feel that the den-PLR is also essentially of this type.

Based on limited numerical work, we further conjecture that the PLRs calling

for the ith dot to be placed in

(i) the first available cell above the diagonal (from the lower left corner to

the upper right),

(ii) the second available cell above the row in which the (i−1)st dot rests

(with the first dot being initially placed in row 1)

generate, for q < 1, derangements with the respective asymptotic probabilities

of 1 and q/Eq(1).
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