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The main result of this note is that given any two time-symmetric cycles, one can
find a time-symmetric extension of one by the other. This means that given a time-
symmetric cycle, both time-symmetric doubles and square roots can be found.
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1. Introduction. In [4], the idea of time-symmetric cycles was introduced.

The basic idea underlying the definition of these cycles is that the dynamics

associated to both the cycle and its inverse are isomorphic. This is a property

that one would expect of physical data. Such data should not look more compli-

cated if time is reversed. In [4], the classification of unimodal time-symmetric

cycles was given. In this note, we drop the unimodal restriction and consider

cycles in general.

Section 2 gives the basic definitions. It is followed by some basic results

concerning time-symmetric cycles; the numbers of time-symmetric cycles of

length n are given as the number of diagonal points in a given cycle. It is

then shown that given any two time-symmetric cycles, one can find a time-

symmetric extension of one by the other. The note concludes by looking at the

process of doubling and finding square roots.

2. Basic ideas. Continuous maps of the interval induce a partial order on

the set of cyclic permutations (cycles).

Suppose that a map of the interval has a periodic orbit P = {p1, . . . ,pn}
labelled so that p1 < ··· < pn. Then P has cycle type π if π is a cycle with

the property that f(pi) = pj if and only if π(i) = j. A cycle π forces a cycle

µ, written π ≥ µ, if every continuous map of the interval that has a periodic

point of cycle type π also has a periodic point with cycle type µ. Baldwin [2]

showed that the forcing relation was a partial order on the set of cycles.

Given β, a cyclic permutation of {1, . . . ,m}, let Lβ : [1,m] → [1,m] denote

the map defined by Lβ = β on {1, . . . ,m} and Lβ is linear on each [i,i+ 1].
The nondegenerate intervals with respect to “Lβ is strictly monotone on I” are

called laps of Lβ. The cycle β is n-modal if Lβ has n+1 laps. We will call the

critical points of Lβ the critical points of β. Since it is standard to use maps

from the unit interval to itself, we will rescale Lβ to form Iβ : [0,1]→ [0,1] by

defining Iβ = f−1Lβf , where f(x)= (m−1)x+1.
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Figure 2.1

Later, we will make some comparisons of what happens in the general case to

the unimodal case. We note that unimodal cycles are divided into two classes:

those with the first lap increasing, and those with the first lap decreasing (the

exceptional cycles (1) and (12)will be considered as belonging to both classes).

We will denote the first class as unimax cycles and the second class as unimin

cycles. It is well known that each class is linearly ordered by the forcing relation

(see, e.g., [1]).

We say that two cycles γ and δ are dynamically equivalent if there exists a

homeomorphism h of the interval such that Iγ = h−1 ◦Iδ◦h.

Letσn denote the cycle of lengthn defined byσn(i)=n−i+1 for i= 1, . . . ,n.

If there is no ambiguity in the value of n, we will write σ instead of σn.

In [4], it was shown that the only two cycles that are dynamically equiva-

lent to α are α and σασ . (Clearly, from a physical viewpoint, α and σασ
correspond to interchanging right and left, and we would expect them to be

dynamically equivalent.)

A cycle α is time-symmetric if α−1 is dynamically equivalent to α. Since the

only cycles that have the property that they are self-inverse are (1) and (12),
the definition can be restated as α is time-symmetric if α−1 = σασ .

Time-symmetric cycles are characterized by the following property.

Lemma 2.1. Let θ denote a cycle of length n. Then θ is time-symmetric if and

only if it has the property that if θ(i)= j, then θ(n+1−j)=n+1−i.
This property means that if the cycle is graphed, the points will be symmet-

rically placed about the diagonal line y =n−x.

Example 2.2. The cycle (12453) graphed in Figure 2.1 is time-symmetric.

Given a cycle θ of length n, we say that an integer k satisfying 1≤ k≤n is a

diagonal point if θ(k) = n+1−k. Thus, in the above example, 2 is a diagonal
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point. In Section 3, it will be shown that time-symmetric cycles always have

diagonal points.

3. Some counting arguments. We first prove two lemmas that will show the

following theorem.

Theorem 3.1. Let θ be a time-symmetric cycle. Ifn is odd, then θ has exactly

one diagonal point. If n is even, then θ has exactly two diagonal points.

Proof. The symmetry implies that an odd time-symmetric cycle must have

an odd number of diagonal points and that an even time-symmetric cycle must

have an even number. The proof will be completed by the following two lemmas

which show that a time-symmetric cycle must have either exactly one or two

diagonal points.

Lemma 3.2. If θ is a time-symmetric cycle, then it has at least one diagonal

point.

Proof. Let θ denote a time-symmetric cycle of length n. The lemma is

obviously true if n is odd, so in what follows, we will only consider the case

that n is even.

The proof looks at the forward orbit of 1 and the backward orbit of n. For

ease of notation, let kj denote θj(1) for 0 ≤ j < n. Let Fi = {kj | 0 ≤ j ≤ i}.
Let Bi = {n+ 1− kj | 0 ≤ j ≤ i}. Clearly, {1} = F0 ≠ B0 = {n} and Fn−1 =
Bn−1 = {1, . . . ,n}. Let r denote the smallest integer such that kr ∈ Br . Clearly,

kr =n+1−ks for some s ≤ r . If s = r , we obtain 2kr =n+1, which contradicts

the fact that n is even, so s < r .

Now, kr = n+ 1− ks means that ks = n+ 1− kr . By definition, we know

that θ(ks) = ks+1. However, we also know that by time-symmetry, θ(n+1−
kr )=n+1−kr−1. Thus, we have ks+1 =n+1−kr−1 which can be rewritten as

kr−1 =n+1−ks+1, which shows that kr−1 ∈ Br . Since r is the smallest integer

such that kr ∈ Br , we know that kr−1 ∉ Br−1. So, we must have kr−1 =n+1−kr
which means that θ(kr−1)=n+1−kr−1 and that kr−1 is a diagonal point.

Lemma 3.3. A time-symmetric cycle can have at most two diagonal points.

Proof. Suppose that θ is a time-symmetric cycle of length n. Suppose that

p is a diagonal point. Let r denote the smallest positive integer such that θr (p)
is diagonal. As in the previous lemma, we will look at the forward and backward

orbit of a point; only in this case we take p instead of 1.

Let kj denote θj(p) for 0≤ j, and let a→ b mean that θ(a)= b.

Then for each j, we have kj → kj+1 and n+1−kj → n+1−kj−1. Since k0

and kr are diagonal, we know that k0 → n+1−k0 = k1 and kr → n+1−kr .

Combining this information gives the following path:

p = k0 �→ k1 �→ ··· �→ kr �→n+1−kr �→n+1−kr−1 �→ ··· �→n+1−k1

= k0 = p.
(3.1)
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None of the pointsn+1−ki, for i= 2, . . . ,r , are diagonal for if θ(n+1−ki)= ki,
then θ(ki−1)= ki = θ(n+1−ki)=n+1−ki−1, and so ki−1 would be diagonal.

The above proof gives a little more information that will be used for the

following proposition.

Proposition 3.4. If θ is a time-symmetric cycle of even lengthn and if p is a

diagonal point, then the other diagonal point is θn/2(p). If θ is a time-symmetric

cycle of odd length n and if p is a diagonal point, then θ(n+1)/2(p)= (n+1)/2.

Proof. The proof in the even case comes immediately from the proof of

the above lemma. We will give the proof for the case when n is odd. As above,

let kj denote θj(p) for 0 ≤ j and let a→ b mean that θ(a) = b. Let r denote

the smallest positive integer such that θr (p) = (n+1)/2. By time-symmetry,

kr−1 → kr = (n+1)/2 tells us that n+1−(n+1)/2= (n+1)/2→n+1−kr−1.

Thus, we have the path

p = k0 �→ k1 �→ ··· �→ kr−1 �→ n+1
2

�→n+1−kr−1 �→ ··· �→n+1−k1

= k0 = p,
(3.2)

and r must equal (n+1)/2.

In [4], it was shown that there are exactly four unimodal time-symmetric

cycles of periodn ifn is even and exactly two ifn is odd. Here, we give the total

number of time-symmetric cycles when the unimodal restriction is dropped.

Theorem 3.5. There are ((n−1)/2)!2(n−1)/2 time-symmetric cycles of length

n if n is odd. There are (n/2)!2(n−2)/2 time-symmetric cycles of length n if n is

even.

Proof. First, we consider the case when n is odd. The previous proposition

shows that if p is the diagonal point, then θ(n+1)/2(p)= (n+1)/2. This means

that the point (n+1)/2 cannot be the diagonal point. Thus, there are n−1

choices for the diagonal point p, and the following construction shows that

each of these choices is allowed. Once p is chosen, θ(p)=n+1−p, and there

are n− 3 choices for θ2(p) (the points (n+ 1)/2, p, and n+ 1−p are not

allowed). Proceeding inductively for 0 < i < (n−1)/2, we see that there are

n+1−2i choices for θi(p) once θi−1(p) has been chosen. Once θ(n−1)/2(p)
has been chosen, everything else is forced. Thus, the total number of ways of

choosing a time-symmetric cycle is (n−1)(n−3)···1= 2(n−1)/2((n−1)/2)!.
In the case when n is even, there are n choices for a diagonal point. Once the

diagonal point p has been chosen, there are n−2 choices for θ2(p). Similarly,

for 0 < i ≤ n/2, there are n+2−2i choices for θi(p) once θi−1(p) has been

chosen. Once θn/2(p) has been chosen, everything else is forced. This gives
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Figure 4.1

n(n−2)···2= 2n/2(n/2)! choices, but since each of the choices has two diag-

onal points, we have double counted and the total number of time-symmetric

cycles is (n/2)!2(n−2)/2.

4. Extensions. In combinatorial dynamics, the idea of extension is impor-

tant. (For basic results on extensions, see [1, 5].) In this section, we show that

if α and β are time-symmetric cycles, we can always form a time-symmetric

extension of α by β. In Section 5, we study some applications of this result.

Definition 4.1. Let α be a cycle of length n and β a cycle of length m.

Let Pi = {(i−1)m+1,(i−1)m+2, . . . , im} for 1 ≤ i ≤ n. If a cycle θ of length

n+m exists with the following properties:

(1) θ sends Pi onto Pα(i) for 1≤ i≤n,

(2) θ is monotone on at least n−1 of the Pi,
(3) θn restricted to {1,2, . . . ,m} is either β or σβσ ,

then θ is called an extension of α by β.

We will consider extensions in general before restricting to the time-

symmetric case.

Example 4.2. First, we give a couple of examples of an extension of (12) by

(123). These are the cycles π1 = (152634) and π2 = (143526) that are graphed

in Figure 4.1. Clearly, π1 is time-symmetric and π2 is not.

We will call the Pi in the definition the blocks of the extension, and the one

Pi on which θ is not monotone, if there is one, will be denoted as the nm-block.

The other blocks, on which θ is monotone, will be called the m-blocks. In both

of the above examples, the nm-block is P1 = {1,2,3}, and there is just one

m-block {4,5,6}. Notice that the graph of π1 restricted to P1 is a translation

of the graph of the cycle (123) and that the graph of π2 restricted to P1 is a
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translation of the graph of (1)(23)= (123)σ . Notice also that π2
2 restricted to

P1 corresponds to (132), but π2
2 restricted to P2 corresponds to (123).

In general, suppose that α is a cycle of length n and β is a cycle of length

m, where m> 2. We will show how to construct all extensions of α by β.

Any of the Pi can be chosen to be the nm-block. Once the nm-block has been

chosen, orientations for extension on the m-blocks can be chosen. Any of the

2n−1 choices is allowed. We then count the number of m-blocks that are orien-

tation reversing. There are two cases to consider: the case when the number of

orientation reversing m-blocks is even and the case when this number is odd.

If the number of orientation reversing m-blocks is even, then either a transla-

tion of β or σβσ can be used for the extension restricted to the nm-block and

these are the only choices. If the number of orientation reversing m-blocks

is odd, then either a translation of σβ or βσ can be used for the extension

restricted to the nm-block and these are the only choices. Notice that every

distinct choice gives rise to a distinct cycle unless β = σβσ or, equivalently,

σβ= βσ . (Such cycles do exist, e.g., σ(135642)σ = (135642).)
If the cycle β has length 2, then the extension restricted to every block will be

monotone. In order to get a cycle of length 2n, the total number of blocks that

are orientation reversing must be odd. So, once the orientations are chosen for

n−1 blocks, the orientation for the last block is forced. (This was noted in [3].)

We summarize this below.

Lemma 4.3. Suppose thatα is a cycle of lengthn and β is a cycle of lengthm,

where m> 2, then there are exactly n2n extensions of α by β if σβσ ≠ β and

exactly n2n−1 extensions if σβσ = β. If α is a cycle of length n and β = (12),
then there are 2n−1 extensions of α by β.

We state a couple of easy results about extensions.

Lemma 4.4. Suppose that θ is an extension of α by β. If α has modality p
and β has modality q, then the modality of θ is at least p+q−1.

Proof. First, it is clearly true if either α or β equal either of (1) or (12)
(recall that both of these are regarded as being unimodal). We will assume that

neither α nor β equal the cycles (1) or (12) and initially restrict the attention

to the laps of the piecewise linear map Lθ that lies between the blocks. Notice

that Lθ restricted to {im,im+1} has the same orientation as Lα on {i,i+1},
for 1 ≤ i ≤ n−1. So, p of the blocks must contain at least one critical point

of Lθ . The modality of Lθ on the nm-block is q. So, Lθ restricted to the nm-

block must have q critical points. So, we can deduce that at least p−1 blocks

contain at least one critical point and that one block must contain q critical

points. Thus, θ must have at least p+q−1 critical points.

Lemma 4.5. Let α be a cycle of length n. If θ is an extension of α by β and

at least one of the blocks is orientation reversing, then there will be at least
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one block where θn is a translation of β and at least one block where θn is a

translation of σβσ .

Proof. Let Pi denote a block on which θ is orientation reversing. Then

θn restricted to Pi is a translation of σpβσq, where p and q are nonnegative

integers that are either both odd or both even. Clearly, the restriction of θn to

Pα(i) is σp−1βσq+1.

We now return the attention to the time-symmetric case. Let α be a time-

symmetric cycle of length n and β be a time-symmetric cycle of length m,

where m> 2. We consider all the ways in which we can form an extension of

α by β that is time-symmetric. First, it is clear that if Pi is going to be the nm-

block, then imust be a diagonal point ofα. Theorem 3.1 tells us that ifn is odd,

there is just one choice for which block can be the nm-block and if n is even,

there are two choices. If k is not a diagonal point of α, once an orientation is

chosen for the extension restricted to Pk is chosen, the orientation for Pn−α(k)
is forced to be the same. If n is even, then α has two diagonal points. Suppose

that l is the diagonal point and the extension is monotone on Pl. Since the

extension can have at most two diagonal points and m > 2, the restriction

to Pl must be orientation-preserving. Thus, in the time-symmetric case, it is

always true that the number of orientation reversing m-blocks is even. So, the

nm-block can contain either β or σβσ (in [4], it is shown that these are distinct

when m> 2).

In the case when β = (12), the above argument applies with the exception

that β= σβσ . Thus, we have the following theorem.

Theorem 4.6. Suppose that α and β are time-symmetric cycles of length n
and m, respectively.

(i) If n is odd and m> 2, there exist exactly 2(n+1)/2 time-symmetric exten-

sions of α by β.

(ii) If n is even andm> 2, there exist exactly 2(n+2)/2 time-symmetric exten-

sions of α by β.

(iii) If n is odd and m = 2, then there are exactly 2(n−1)/2 time-symmetric

extensions of α by β.

(iv) If n is even and m = 2, then there are exactly 2n/2 time-symmetric ex-

tensions of α by β.

Corollary 4.7. Suppose thatα andβ are time-symmetric cycles. Then time-

symmetric extensions of α by β exist.

5. Doubles and square roots. Given a cycle α, a double of α is an extension

of α by (12) and a square root of α is an extension of (12) by α. (Example 4.2

gives two examples of square roots of (123).) Both these doubling and square-

rooting operations are important. For example, the proof of Sarkovskii’s theo-

rem is really an argument about cycles and all the even cycles in this proof are
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obtained by using these two operations (see [1] for a proof where this is made

explicit). Also, it is often claimed that physical experiments exhibit a sequence

of period doubling bifurcations.

In [3], it is shown that a double of a cycleα is next toα in the forcing relation

in the sense that if γ ≠ α and γ forces α, then γ must force a double of α,

and that doubles of α force α. In the general case, the non-time-symmetric

case, it is always possible to find a double of a cycle with the same modality.

However, in [4], it was shown that in the time-symmetric unimodal case, it is

not possible to have an extended sequence of period doubling. Section 4 of this

note shows that time-symmetric doubles of time-symmetric cycles do exist. In

what follows, we examine what happens to the modality as we go through a

time-symmetric sequence of doubles.

Theorem 5.1. Let α denote a time-symmetric cycle. Then the modality of

any time-symmetric double of a double of a double of α is greater than the

modality of α.

Proof. Suppose that α is a time-symmetric cycle. Let α1 denote a time-

symmetric double of α. There must be a diagonal point k of α such that 2k−1

and 2k are diagonal points of α1.

Suppose that k is not a critical point of the piecewise linear map Lα. Now, if

the modality of α equals the modality of α1, we must have α(k−1) > α(k) >
α(k+1) and α1(2(k−1)) > α1(2k−1) > α1(2k) > α1(2(k+1)−1). Now, any

double of α1 must have exactly two diagonal points by Theorem 3.1. So, one

of the blocks P2k−1 or P2k for the double of α1 must be orientation-preserving

and the modality must be increased by at least two.

Suppose that k is a critical point of Lα. Without loss of generality, assume

that α(k) > α(k+ 1) and α(k) > α(k− 1). If the modality of α equals the

modality of α1, we must have 2k−1 and 2k as diagonal points and 2k−1 as

a local maximum of Lα1 . Let α2 denote a double of α1. If α2 has the same

modality as α1, then the block P2k−1 must be orientation-preserving and P2k

orientation-reversing. Thus, the diagonal points for α2 must be 2(2k)−1 and

2(2k) and we have α2(2(2k−1)) > α2(2(2k)−1) > α2(2(2k)). The argument

in the previous paragraph then shows that any double of α2 must increase the

modality by at least two.

Example 5.2. The time-symmetric cycle (12453), graphed in Example 2.2,

is an example where 2 is both a diagonal point and a critical point. This cy-

cle has modality 4. It is easily checked that (1,3,8,10,5,2,4,7,9,6) followed

by (1,5,15,19,10,3,7,14,18,11,2,6,16,20,9,4,8,13,17,12) is the only time-

symmetric sequence of doublings that have the same modality. The next time-

symmetric double must increase the modality by at least two.

We now turn our attention to square roots. In [1], it is shown how the entropy

of an extension is related to the topological entropy of its component cycles.

For the special case of square roots, it gives us the following theorem.
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Theorem 5.3. Let α denote any cycle and h(α) denote its topological en-

tropy. The entropy of any square root of α is (1/2)h(α).

Thus, if α has positive topological entropy, any square root of α will have

lower entropy. In the non-time-symmetric unimodal case, this is important

because it is always possible to choose a unimax/unimin square root of a uni-

max/unimin cycle. Since unimax/unimin cycles are linearly ordered, we know

that any unimodal cycle with positive entropy will force a square root of this

cycle.

In the time-symmetric case, Section 4 shows that we can find time-symmetric

square roots of time-symmetric cycles. As above, if the topological entropy of

the initial cycle is positive, then the topological entropy of the square root

will be half of the entropy of the initial cycle. However, we will show that the

modality of the square root is greater than the modality of the initial cycle. So,

in the time-symmetric case, a cycle can never force its square root.

Theorem 5.4. Let α denote a time-symmetric cycle of length n > 2 and

modalitym. Then there are exactly four time-symmetric square roots of α. Two

of these have modality m+1 and two have modality m+2.

Proof. The cycle (12) has to be extended by α to obtain the square root.

Thus, there are two blocks P1 and P2. Since the extension will have exactly two

diagonal points, the orientation of the extension on the monotone block must

be positive. If P1 is the m-block, then the extension will have a maximum at

n. If P2 is the m-block, then the extension will have a minimum at n+1. The

number of critical points of the extension restricted to the nm-block is exactly

the number of critical points of α. There are two choices of what can be placed

in the nm-block: either a translation of α or σασ . One of these will force an

endpoint of the nm-block to be a critical point of the extension and the other

will not. Thus, the extension will have one critical point in the m-block and

either m or m+1 in the nm-block.

Corollary 5.5. Let α be a time-symmetric cycle. Then α cannot force a

time-symmetric square root of α.

Proof. A cycle can never force a cycle of higher modality, so this result

follows immediately from the above theorem unless α is (1) or (12). These

two special cases are easily checked.
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